6. Уравнение

x4 + (x+2)4 = 82,

«симметричное» относительно x + 1, сводится к биквадратному уравнению y4 + 6y2 = 40 заменой y = x + 1; аналогично уравнение (x+1)(x+2)(x+4)(x+5) = 40, «симметричное» относительно x + 3, сводится к биквадратному уравнению (y2 - 1)(y2 - 4) = 40 заменой y = x + 3. Отметим, что для второго уравнения годится и замена y = x2 + 6x, тогда (x+1)(x+5) = y+5; (x+2)(x+4) = y + 8.

КВАДРАТНЫЙ ТРЕХЧЛЕН

Так называют многочлен, определяемый формулой ax2+bx+c a≠0. Числа a,b и c - коэффициенты квадратного трехчлена, они обычно называются: a - старший, b - второй или средний коэффициент, c - свободный член. Функция вида y=ax2+bx+c называется квадратичной функцией.

После линейной функции квадратичная функция – простейшая и важнейшая элементарная функция. Многие физические зависимости выражаются квадратичной функцией; например, камень, брошенный вверх со скоростью v0, находится в момент времени t на расстоянии

s(t) = -(g/2) t2 + v0t

от земной поверхности (здесь g - ускорение силы тяжести); количество тепла Q, выделяемого при прохождении тока в проводнике с сопротивлением R, выражается через силу тока I формулой Q = RI2.

Простейший частный случай квадратичной функции есть функция y=ax2. На рис. 1 изображены графики функций y=ax2 при разных значениях a. График функции y=ax2 называется параболой.

Энциклопедический словарь юного математика _397.jpg

Рис. 1

У всех этих парабол вершина находится в начале координат; при a > 0 это наинизшая точка графика (наименьшее значение функции), а при a < 0, наоборот, наивысшая точка (наибольшее значение функции). Ось Oy есть ось симметрии каждой из таких парабол.

Как видно, при a > 0 парабола направлена вверх, при a < 0 - вниз.

Существует простой и удобный графический способ, позволяющий строить любое число точек параболы y=ax2 без вычислений, если известна точка параболы, отличная от вершины. Пусть точка M(x0,y0) лежит на параболе y=ax2 (рис. 2). Если мы хотим построить между точками O и M дополнительно еще n точек, то делим отрезок ON оси абсцисс на n + 1 равных частей и в точках деления проводим перпендикуляры к оси Ox. На столько же равных частей делим отрезок NM и точки деления соединяем лучами с началом координат. Искомые точки параболы лежат на пересечении перпендикуляров и лучей с одинаковыми номерами (на рис. 2 число точек деления равно 9).

Энциклопедический словарь юного математика _398.jpg

Рис. 2

График функции y=ax2+bx+c отличается от графика y=ax2 лишь своим положением и может быть получен просто перемещением кривой на чертеже. Это следует из представления квадратного трехчлена в виде

ax2 + bx + c = a(x + b/2a)2 - (b2 - 4ac)/4a,

откуда легко заключить, что график функции y=ax2+bx+c есть парабола y=ax2, вершина которой перенесена в точку

Энциклопедический словарь юного математика _399.jpg
,

а ось ее симметрии осталась параллельной оси Oy (рис. 3). Из полученного выражения для квадратного трехчлена легко следуют все его основные свойства. Выражение D=b2-4ac называют дискриминантом квадратного трехчлена ax2+bx+c и дискриминантом связанного с ним квадратного уравнения ax2+bx+c=0. От знака дискриминанта зависит, пересекает ли график квадратного трехчлена ось абсцисс или лежит по одну сторону от нее. Именно, если D <0, то парабола не имеет общих точек с осью Ox, при этом: если a > 0, то парабола лежит выше оси Ox, а если a < 0, то ниже этой оси (рис. 4). В случае D > 0 график квадратного трехчлена пересекает ось абсцисс в двух точках x1 и x2, которые являются корнями квадратного уравнения ax2+bx+c=0 и равны соответственно

x1 = 1/2a (-b - √D), x2 = 1/2a (-b + √D).

При D=0 парабола касается оси Ox в точке

Энциклопедический словарь юного математика _400.jpg
.

Энциклопедический словарь юного математика _401.jpg

Рис. 3

Энциклопедический словарь юного математика _402.jpg

Рис. 4

Свойства квадратного трехчлена лежат в основе решения квадратных неравенств. Поясним это на примере. Пусть требуется найти все решения неравенства 3x2 - 2x - 1 < 0. Найдем дискриминант квадратного трехчлена, стоящего в левой части неравенства: D = 16. Так как D > 0, то соответствующее квадратное уравнение 3x2 - 2x - 1 = 0 имеет два различных корня, они определяются по формулам, приведенным ранее:

x1 = - 1/3 и x2 = 1.

В рассматриваемом квадратном трехчлене a = 3 > 0, значит, ветви его графика направлены вверх и значения квадратного трехчлена отрицательны лишь в интервале между корнями. Итак, все решения неравенства удовлетворяют условию

-1/3 < x < 1.

К квадратным неравенствам могут быть сведены разнообразные неравенства теми же самыми заменами, какими различные уравнения сводятся к квадратному.

КЛАССИЧЕСКИЕ ЗАДАЧИ ДРЕВНОСТИ

Древнегреческие математики достигли чрезвычайно большого искусства в геометрических построениях с помощью циркуля и линейки. Однако три задачи не поддавались их усилиям. Прошли тысячелетия, и только в наше время, наконец, были получены их решения.

Вот эти задачи: построение квадрата, равновеликого данному кругу (или, сокращенно, квадратура круга); деление произвольно заданного угла или дуги на три равновеликие части (или трисекция угла), и построение куба, объем которого вдвое больше объема заданного куба (или удвоение куба).

История нахождения квадратуры круга длилась четыре тысячелетия, а сам термин стал синонимом неразрешимых задач. Как следует из подобия кругов, отношение длины окружности к ее диаметру есть величина постоянная, не зависящая от радиуса круга, она обозначается буквой π. Таким образом, длина окружности круга радиуса r равна 2πr, а так как площадь круга равна S = πr2 (см. Окружность и круг), то задача о квадратуре круга сводится к задаче построения треугольника с основанием 2πr и высотой r. Для него потом уже без труда может быть построен равновеликий квадрат (см. Равновеликие и равносоставленные фигуры).

Итак, задача сводилась к построению отрезка, длина которого равна длине окружности данного круга. Это было показано еще Архимедом в сочинении «Измерение круга», где он доказывает, что число π меньше чем 3 1/7, но больше чем 3 10/71, т.е. 3,1408 < π < 3,1429.

В наши дни с помощью ЭВМ число π вычислено с точностью до миллиона знаков, что представляет скорее технический, чем научный интерес, потому что такая точность никому не нужна. Десяти знаков числа π ( π = 3,141592653...) вполне достаточно для всех практических целей. Долгое время в качестве приближенного значения π использовали число 22/7, хотя уже в V в. в Китае было найдено приближение 355/113 = 3,1415929..., которое было открыто вновь в Европе лишь в XVI в. В Древней Индии π считали равным √10 = 3,1622.... Французский математик Ф. Виет вычислил в 1579 г. π с 9 знаками. Голландский математик Лудольф Ван Цейлен в 1596 г. публикует результат своего десятилетнего труда - число π, вычисленное с 32 знаками.


Перейти на страницу:
Изменить размер шрифта: