
Рис. 8

Рис. 9
Сам факт существования всего пяти действительно правильных многогранников удивителен – ведь правильных многоугольников на плоскости бесконечно много.
Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XIII книга знаменитых «Начал» Евклида. Эти многогранники часто называют также Платоновыми телами – в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном, четыре из них олицетворяли четыре стихии: тетраэдр – огонь, куб – землю, икосаэдр – воду и октаэдр – воздух; пятый же многогранник, додекаэдр, символизировал все мироздание – его по-латыни стали называть quinta essentia («пятая сущность»). Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было нетрудно, тем более что эти формы имеют природные кристаллы, например: куб – монокристалл поваренной соли (NaCl), октаэдр – монокристалл алюмокалиевых квасцов ((K Al SO4)2·12H2O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр, нетрудно построить и икосаэдр: как уже говорилось, его вершинами будут центры двенадцати граней додекаэдра – рис. 9.
МНОГОУГОЛЬНИК
Часть плоскости, ограниченная замкнутой ломаной A1A2...AnA1, не имеющей точек самопересечения, называется многоугольником или n-угольником ( n≥3). Звенья ломаной – отрезки A1A2,...,AnA1 – называются сторонами, точки A1,...,An – вершинами, углы между лучами, проведенными из каждой вершины в соседние, - углами многоугольника (рис. 1).

Рис. 1
Общим свойством n-угольников является неизменность суммы их (внутренних) углов:
A1 + A2 + ... + An = (n-2)·180° = (n-2)π.
С древних времен многоугольники принято классифицировать и называть соответственно степени их симметричности, правильности. Среди треугольников выделяют равнобедренные (с одной осью симметрии) и равносторонние, или правильные (с тремя осями симметрии) (рис. 2). Четырехугольники, имеющие центр симметрии, называют параллелограммами. Конечно, такое определение эквивалентно школьному: параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны. Четырехугольник, у которого две стороны (основания) параллельны, а две другие (боковые стороны) не параллельны, именуют трапецией.

Рис. 2
Можно доказать, что больше одного центра симметрии многоугольник иметь не может, а вот осей симметрии может быть любое число. Четырехугольники с единственной осью симметрии бывают двух видов: равнобедренные (или равнобокие) трапеции и дельтоиды (или ромбоиды) (рис. 3). Параллелограммы, имеющие оси симметрии, подразделяются на ромбы (параллелограммы с равными сторонами), прямоугольники (параллелограммы с равными - прямыми - углами) и квадраты (ромбы с прямыми углами или прямоугольники с равными сторонами); осей симметрии у них 2 или 4 (рис. 4).

Рис. 3

Рис. 4
При произвольном n≥3 рассматривают правильные n-угольники: у них все стороны и все (внутренние) углы равны. Правильный n-угольник можно получить, разделив окружность на n равных дуг и соединив соседние точки деления (рис. 5). Центр этой (описанной) окружности называется центром правильного n-угольника; через него проходят n осей симметрии n-угольника.

Рис. 5
Если при данном n ≥ 5 соединить не соседние, а следующие через m дуг точки деления окружности, где 1 < m < n/2, то проведенные n хорд образуют фигуру, которую обозначают символом {n/m}. На рис. 6 и 7 изображены пентаграмма {5/2} и октаграмма {8/2}.

Рис. 6

Рис. 7
Еще в глубокой древности была поставлена практическая задача построения правильного n-угольника Mn с помощью циркуля и линейки (см. Геометрические построения). Построения M3,M4 и M6 очень просты и показаны на рис. 8. Конечно, построение Mn эквивалентно делению окружности на n равных дуг. Дугу легко разделить пополам, построив биссектрису соответствующего центрального угла, поэтому по правильному k-угольнику легко построить 2k-угольник, затем 4k-угольник и, вообще, Mn при любом n = k·2m. Следовательно, предыдущие построения дают возможность построить две серии правильных n-угольников: при n = 3·2m и n = 4·2m, где m ≥ 0, - а общую задачу построения Mn достаточно решить лишь для нечетных n.

Рис. 8
Евклид в своих «Началах» кроме построения двух указанных серий многоугольников приводит построения правильных пятиугольника и пятнадцатиугольника (а вместе с ними еще двух серий Mn: для n = 5·2m и n = 15·2m. Построение пятиугольника или десятиугольника сводится к так называемому «золотому сечению» отрезка. Ясно, что для построения M10 достаточно по известному радиусу описанной окружности R построить сторону x десятиугольника. Рассматривая один из десяти треугольников со сторонами OA = OB = R, AB = x и углами AOB = 36°, A = B = 72°, из которых составлен десятиугольник, после проведения биссектрисы BC (рис. 9), из подобия треугольников OAB и ABC и равенства отрезков AB,BC,OC получаем пропорцию x/(R-x) = R/x, которая с античных времен называется «золотой». Она показывает, что точка C делит отрезок OA так, что большая часть относится к меньшей так же, как весь отрезок к большей части. Такое деление отрезка и называют «золотым сечением». Пропорция записывается как уравнение
x2 + Rx - R2 = 0,
из которого
x = R(√5 - 1)/2.

Рис. 9
Конечно, по отрезку R легко построить и отрезок R√5 (рис. 10), а затем и x. Короткое построение дано на рис. 11: отрезок OE дает сторону правильного десятиугольника, BE – пятиугольника, вписанных в окружность с центром O.

Рис. 10

Рис. 11
Поскольку построение Mn эквивалентно построению угла в 360°/n, а углы 60° = 360°/n и 36° = 360°/10 мы уже умеем строить, то по ним строится и угол 60° - 36° = 24° = 360°/15, а значит, и правильный пятнадцатиугольник.
Прошло более двух тысячелетий, прежде чем евклидов список n-угольников удалось пополнить. Это сделал в 1796 г. немецкий математик К. Ф. Гаусс: используя алгебраические идеи, он дал построение правильного семнадцатиугольника и доказал невозможность построения с помощью только циркуля и линейки правильных n-угольников при n = 7 и 9. Отметим, что построение правильного девятиугольника давало бы угол в 360°/9 = 40°, а вместе с ним и угол в 20°=60°/3, т. е. трисекцию угла в 60°, которую невозможно осуществить циркулем и линейкой (см. Классические задачи древности). Более того, К. Ф. Гаусс доказал, что построение Mn при нечетном n осуществимо тогда, и только тогда, когда n является простым числом вида