Но посмотрим всё же, какой вывод делается.
Эта история ясно показывает, что даже самые респектабельные научные теории вроде ньютоновской динамики и теории гравитации могут терпеть неудачу, запрещая какие-либо наблюдаемые положения вещей.
Этот пассаж, скорее всего, искажён переводчиком и кончался в оригинале примерно так: «may fail to prohibit any observable state of things», т. е. «могут оказаться не в состоянии запретить никакие наблюдаемые положения вещей». Интересна смена модальности по сравнению с началом всей истории: там было безапелляционное «не могут», а здесь «могут оказаться не в состоянии». Видимо, автор всё же чувствует, что доказательство немножко недостаточно железобетонное.
Разумеется, ничего такого эта история не показывает, да и не может показать. К этому и сходным положениям мы ещё вернемся, чтобы понять, откуда они всё-таки берутся; здесь же нашей целью было продемонстрировать только тот факт, что философ науки предмета своего исследования откровенно не понимает (признаю, этот общий вывод сделан на основании одного примера, но так же поступает и Лакатос; наш пример, по крайней мере, не выдуманный).
Теперь известно, что броуновская частица представляет собой вечный двигатель второго рода и что её существование опровергает второй закон феноменологической термодинамики.
Философы науки очень любят опровергать законы природы, мы с этим встретимся ещё не раз. Причина этого, забегая вперёд, примерно такая: философ пытается логически доказать, что закон природы можно однозначно вывести из опыта. Обнаруживает, что это ему не удаётся. (Законы природы выводятся из опыта, но не дедуктивно-механически, как того хотели бы ученики Аристотеля, а индуктивно-творчески. Но это отдельная большая тема, о которой надо говорить либо подробно, либо никак.) Отсюда он делает вывод, что раз законы природы логически доказать нельзя, то их и вовсе не существует.
Однако опровергать законы природы — дело тяжёлое и неблагодарное, требующее незаурядной ловкости рук.
Второй закон термодинамики гласит, что если холодное тело и горячее привести в соприкосновение, то холодное нагреется, а горячее остынет — и никогда наоборот! Как должно было бы выглядеть нарушение этого закона броуновской частицей? Напомню, что броуновское движение — это наблюдаемое в микроскоп самопроизвольное беспорядочное движение мелких пылинок. Чтобы говорить о нарушении второго начала термодинамики в этом случае, требовалось бы установить, что броуновскаяя частица нагревается, отбирая тепло у жидкости. Разумеется, этого не происходит, они находятся при одной температуре. Почему же наш философ говорит о нарушении закона природы? Читаем дальше.
Посмотрим, что требуется для открытия несовместимости между феноменом броуновского движения и вторым законом термодинамики. Для этого требуется: а) измерить точное движение частицы, с тем чтобы установить изменение ее кинетической энергии и энергию, потраченную на преодоление сопротивления жидкости, и б) точно измерить температуру и теплоту, переданную окружающей среде, для обоснования утверждения о том, что любая потеря в данном случае действительно компенсируется ростом энергии движущейся частицы и работой, затраченной на преодоление сопротивления жидкости.
Это чрезвычайно путаное объяснение расшифровать можно только предположительно. В пункте (б) говорится, по-видимому, о сохранении энергии. Закон сохранения энергии — это первый закон термодинамики. Таким образом, Фейерабенд утверждает, что если бы можно было непосредственно проверить выполнение первого закона термодинамики в случае броуновской частицы, это опровергло бы второй закон термодинамики. Разумеется, это абсолютная чепуха.
Какой же вывод делается из всего этого?
Поэтому «прямое» опровержение второго закона термодинамики, которое опиралось бы только на «феноменологическую» теорию и «факт» броуновского движения, невозможно. Оно невозможно вследствие структуры мира, в котором мы живём, и в силу законов, справедливых в этом мире.
В самом деле, прямое опровержение законов, справедливых в мире, в котором мы живём, невозможно в силу законов, справедливых в этом мире. О, философия!..
И, как хорошо известно, действительное опровержение этого закона было получено совершенно иным образом: оно было получено с помощью кинетической теории и благодаря её использованию Эйнштейном при вычислении статистических свойств броуновского движения. При этом феноменологическая теория (T) была включена в более широкий контекст статистической физики (T) таким образом, что условие совместимости было нарушено, и лишь после этого был поставлен решающий эксперимент (исследования Сведберга и Перрина).
А вот здесь мы сталкиваемся с ещё одной упрямо повторяющейся темой. Здесь утверждается, что феноменологическая термодинамика (теория тепловых явлений, оперирующая понятиями температуры, давления, количества тепла и т. п., но не связывающая их с молекулярным строением вещества) была опровергнута статистической физикой (теорией теплоты как молекулярного движения). Между тем любой физик скажет вам, что статистическая термодинамика, наоборот, обосновала феноменологическую. Совершенно аналогичным образом философы считают, что, например, теория относительности опровергла ньютоновскую динамику, а физики — что доказала. Как возможно такое фундаментальное расхождение во взглядах? В этом мы попробуем разобраться на примере из Куна.
Надо сразу сказать, что Кун грамотнее и Лакатоса, и тем более Фейерабенда в том, что касается понимания физики. Цитировать здесь придётся больше.
Наиболее известным и ярким примером, связанным со столь ограниченным пониманием научной теории, является анализ отношения между современной динамикой Эйнштейна и старыми уравнениями динамики, которые вытекали из «Начал» Ньютона. С точки зрения настоящей работы, эти две теории совершенно несовместимы в том же смысле, в каком была показана несовместимость астрономии Коперника и Птолемея: теория Эйнштейна может быть принята только в случае признания того, что теория Ньютона ошибочна. Но сегодня приверженцы этой точки зрения остаются в меньшинстве. Поэтому мы должны рассмотреть наиболее распространённые возражения против неё.