Для того чтобы этого не произошло, на крутых поворотах (или, как говорят, виражах) шоссе делают наклонным, т. е. горизонтальным для велосипедиста — так, как на рис. 2.10, б. Таким способом можно сильно уменьшить, а то и вовсе уничтожить стремление к соскальзыванию. Именно так устроены повороты на велосипедных треках и автострадах.
Теперь займемся вращающимися системами. Движение такой системы определяется числом оборотов в секунду, которое совершает эта система, поворачиваясь вокруг оси. Надо, конечно, знать и направление оси вращения.
Чтобы лучше понять особенности жизни во вращающихся системах, рассмотрим «колесо смеха» — известный аттракцион. Устройство его очень несложно. Гладкий диск диаметром в несколько метров быстро вращается. Желающим предлагается сесть на него и попробовать удержаться. Даже люди, не знающие физики, быстро постигают секрет успеха: надо устроиться в центре диска, так как чем дальше от центра, тем труднее удержаться.
Такой диск представляет собой неинерциальную систему с некоторыми особыми свойствами. Каждый предмет, скрепленный с диском, движется по окружности радиуса R со скоростью и, т. е. с ускорением v2/R. Как мы уже знаем, с точки зрения неинерциального наблюдателя это означает наличие дополнительной тяжести mv2/R, направленной по радиусу от центра. В любой точке «чертова колеса» будет действовать эта радиальная сила тяжести, в любой точке она будет создавать радиальное ускорение v2/R. Для точек, лежащих на одной окружности, величина этого ускорения будет одинаковой. А на разных окружностях? Не торопитесь сказать, что ускорение, согласно формуле v2/R, будет тем больше, чем меньше расстояние от центра. Это неверно; ведь скорость более удаленных от центра точек колеса будет больше. Действительно, если обозначить буквой n число оборотов, совершаемых коленом в секунду, то путь, проходимый точкой колеса, находящейся на расстоянии R от центра, за одну секунду, т. е. скорость этой точки, можно выразить так: 2π∙Rn.
Скорость точки прямо пропорциональна ее расстоянию от центра. Теперь формулу ускорения можно переписать:
а = 4π2n2R.
А так как число оборотов, совершаемых в секунду, одинаково для всех точек колеса, то мы приходим к результату: ускорение силы «радиальной тяжести», действующей на вращающемся колесе, возрастает пропорционально расстоянию точки от центра колеса.
В этой интересной неинерциальной системе сила тяжести на разных окружностях разная. Значит, и направления «вертикалей» для тел, находящихся на разных расстояниях от центра, будут разные. Сила притяжения Землей, разумеется, одна и та же во всех точках колеса. А вектор, характеризующий дополнительную радиальную тяжесть, становится длиннее по мере удаления от центра. Значит, диагонали прямоугольников отклоняются все больше и больше от земной вертикали.
Если представить последовательные ощущения человека, соскальзывающего с «колеса смеха», придерживаясь его точки зрения, то можно сказать, что по мере удаления от центра диск «наклоняется» все больше и больше и удержаться на нем становится невозможно. Чтобы удержаться на диске, надо стараться поместить свой центр тяжести на «вертикаль», которая тем больше наклонена к оси вращения, чем дальше от нее находятся фигурки человека, нарисованные на рис. 2.11.
Однако нельзя ли придумать для этой инерциальной системы устройство, похожее на наклонное шоссе? Конечно, можно, но придется заменить диск такой поверхностью, чтобы в каждой ее точке полная сила тяжести была перпендикулярна к поверхности. Форму такой поверхности можно рассчитать. Она называется параболоидом. Название это не случайно: в каждом своем вертикальном сечении параболоид дает параболу — кривую, по которой падают тела. Параболоид возникает при вращении параболы вокруг ее оси.
Очень легко создать такую поверхность, если привести в быстрое вращение сосуд с водой. Поверхность вращающейся жидкости и есть параболоид. Частицы воды перестанут перемещаться как раз тогда, когда сила, прижимающая каждую частицу к поверхности, будет перпендикулярна к поверхности. Каждой скорости вращения соответствует свой параболоид (рис. 2.12).
Если изготовить твердый параболоид, то можно наглядно показать его свойство. Маленький шарик, помещенный в любой точке вращающегося с определенной скоростью параболоида, останется в покое. Это значит, что действующая на него сила будет перпендикулярна к поверхности. Иначе говоря, поверхность вращающегося параболоида обладает как бы свойствами горизонтальной поверхности. По такой поверхности можно ходить, как по земле, и чувствовать себя при этом вполне устойчиво. Однако при ходьбе направление вертикали будет изменяться.
Центробежные явления широко используются в технике. На использовании этих явлений основано, например, устройство центрифуги.
Центрифуга представляет собой барабан, быстро вращающийся вокруг своей оси. Что будет, если в такой барабан, наполненный до краев водой, бросать разные предметы?
Опустим в воду металлический шарик — он пойдет ко дну, но не по нашей вертикали, а все время удаляясь от оси вращения и остановится у стенки. Теперь бросим в барабан пробковый шарик — он, наоборот, сразу начнет движение по направлению к оси вращения и там расположится.
Если барабан этой модели центрифуги большого диаметра, то мы заметим, что ускорение резко нарастает по мере отдаления от центра.
Происходящие явления нам вполне понятны. Внутри центрифуги имеется дополнительная радиальная тяжесть. Если центрифуга вращается достаточно быстро, то ее «низ» — это стенки барабана. Металлический шарик «погружается» в воду, а пробковый «всплывает». Чем дальше от оси вращения, тем «тяжелее» становится «падающее» в воду тело.
В достаточно совершенных центрифугах скорость вращения доводится до 60 000 оборотов в минуту, т. е. 103 оборотов в секунду. На расстоянии 10 см от оси вращения ускорение радиальной силы тяжести будет равно примерно
40∙106∙0,1 = 4∙106 м/с2,
т. е. в 400 000 раз больше земного ускорения.
Ясно, что земную тяжесть для таких машин можно не учитывать, мы действительно вправе считать, что «низ» в центрифуге — это стенки барабана.
Из сказанного становятся понятными области применения центрифуги. Если мы хотим отделить в смеси тяжелые частицы от легких, всегда целесообразно применение центрифуги. Всем известно выражение: «мутная жидкость отстоялась». Если грязная вода постоит достаточно долго, то муть (обычно более тяжелая, чем вода) осядет на дно. Однако процесс оседания может продолжаться месяцами, а при помощи хорошей центрифуги можно очистить воду мгновенно.
Центрифуги, вращающиеся со скоростью в десятки тысяч оборотов в минуту, способны выделять тончайшую муть не только из воды, но и из вязких жидкостей.
Центрифуги применяются в химической промышленности для отделения кристаллов от раствора, из которого они выросли, для обезвоживания солей, для очистки лаков; в пищевой промышленности — для разделения патоки и сахарного песка.
Центрифуги, применяемые для отделения от большого количества жидкости твердых или жидких включений, называют сепараторами. Главное их применение — обработка молока. Молочные сепараторы вращаются со скоростью 2–6 тысяч оборотов в минуту, диаметр их барабана доходит до 5 м.