Явление отдачи необходимо следует из правила равенства действия и противодействия. Если пар действует на пробку, то и пробка действует на пар в обратную сторону, а пар передает это противодействие пробирке.
Но, может быть, вам приходит в голову возражение: разве может одна и та же сила приводить к столь разным следствиям? Ружье лишь слегка отходит обратно, а пуля летит далеко. Мы надеемся, однако, что такое возражение не пришло в голову читателю. Конечно, одинаковые силы могут приводит к разным следствиям: ведь ускорение, которое получает тело (а это и есть следствие действия силы), обратно пропорционально массе этого тела. Ускорение одного из тел (снаряда, пули, пробки) мы должны записать в виде а1 = F/m1, ускорение же тела, испытавшего отдачу (орудия, винтовки, пробирки), будет а2 = F/m2. Так как сила одна и та же, то мы приходим к важному выводу: ускорения, полученные при взаимодействии двух тел, участвующих в «выстреле», будут обратно пропорциональны их массам:
а1/а2 = m2/m1.
Это значит, что ускорение, которое получит пушка при откате, будет во столько раз меньше ускорения снаряда, во сколько раз пушка весит больше, чем снаряд.
Ускорение пули, а также и ружья при отдаче, длится до тех пор, пока пуля движется в дуле ружья. Обозначим это время буквой t. Через этот промежуток времени ускоренное движение сменится равномерным. Для простоты будем считать ускорение неизменным. Тогда скорость, с которой пуля вылетит из дула ружья, будет v1 = а1∙t, а скорость отдачи v2 = а2∙t. Так как время действия ускорения одно и то же, то v1/v2 = а1/а2 и, следовательно,
v1/v2 = m2/m1.
Скорости, с которыми разлетаются тела после взаимодействия, будут обратно пропорциональны массам этих тел.
Если вспомнить векторный характер скорости, то последнее соотношение можно переписать так: m1v1 = = —m2v2; знак минус говорит о том, что скорости v1 и v2 направлены в противоположные стороны.
Наконец, перепишем равенство еще раз — перенесем произведения масс на скорости в одну сторону равенства:
m1v1 + m2v2 = 0.
Произведение массы тела на его скорость называется импульсом тела (другое название — количество движения). Так как скорость — вектор, то и импульс является векторной величиной. Разумеется, направление импульса совпадает с направлением скорости движения тела.
При помощи нового понятия закон Ньютона F = ma может быть выражен иначе. Так как а = (v2 — v1)/t, то F = (mv2 - mv1)/t, или Ft = mv2 - mv1. Произведение силы на время ее действия равно изменению импульса тела.
Вернемся к явлению отдачи.
Наш результат рассмотрения отдачи орудия можно теперь сформулировать короче: сумма импульсов орудия и снаряда после выстрела остается равной нулю. Очевидно, такой же она была и до выстрела, когда орудие и снаряд находились в состоянии покоя.
Скорости, входящие в уравнение m1v1 + m2v2 = 0 — это скорости непосредственно после выстрела. При дальнейшем движении снаряда и орудия на них начнут действовать силы тяжести, сопротивление воздуха, а на пушку дополнительно — и сила трения о землю. Вот если бы выстрел был произведен в безвоздушном пространстве из орудия, висящего в пустоте, тогда движение со скоростями v1 и v2 продолжалось бы сколь угодно долго. Орудие двигалось бы в одну сторону, а снаряд — в противоположную.
В артиллерийской практике в настоящее время широко применяются орудия, установленные на платформе и стреляющие на ходу. Как же изменить выведенное уравнение, чтобы оно было применимо к выстрелу из такого орудия? Мы можем записать:
m1u1 + m2u2 = 0,
гдег u1 и u2 — скорости снаряда и орудия по отношению к движущейся платформе. Если скорость платформы V, то скорости орудия и снаряда по отношению к покоящемуся наблюдателю будут v1 = u1 + V и v2 = u2 + V.
Подставляя значения u1 и u2 в последнее уравнение, получим:
(m1 + m2)∙V = m1v1 + m2v2.
В правой части равенства у нас стоит сумма импульсов снаряда и орудия после выстрела. А в левой? До выстрела орудие и снаряд с общей массой m1 + m2 движутся вместе со скоростью V. Значит, и в левой части равенства стоит общий импульс снаряда и орудия, но до выстрела.
Мы доказали очень важный закон природы, который называется законом сохранения импульса. Доказали мы его для двух тел, но можно легко показать, что такой же результат имеет место и для любого числа тел. Каково же содержание закона? Закон сохранения импульса говорит, что сумма импульсов нескольких тел, находящихся во взаимодействии, не меняется в результате этого взаимодействия.
Ясно, что закон сохранения импульса будет справедлив лишь тогда, когда на ту группу тел, которую мы рассматриваем, не действуют силы со стороны. Такая группа тел называется в физике замкнутой.
Ружье и пуля во время выстрела ведут себя, как замкнутая группа двух тел, несмотря на то, что испытывают действие силы земного притяжения. Вес пули мал по сравнению с силой пороховых газов, и явление отдачи произойдет по одним и тем же законам, независимо от того, где будет произведен выстрел — на Земле или в ракете, летящей в межпланетном пространстве.
Закон сохранения импульса позволяет легко решать различные задачи, относящиеся к столкновениям тел. Попробуем одним глиняным шариком попасть в другой — они слипнутся и будут продолжать движение вместе; если выстрелить из ружья в деревянный шар, он покатится вместе с застрявшей в нем пулей; стоявшая вагонетка покатится, если человек с разбегу прыгнет в нее. Все приведенные примеры с точки зрения физика весьма похожи. Правило, связывающее скорости тел при столкновениях такого типа, сразу же получается из закона сохранения импульса.
Импульсы тел до встречи были m1v1 и m2v2 после столкновения тела объединились, их общая масса равна m1 + m2. Обозначив скорость объединившихся тел через V, получим:
m1v1 + m2v2 = (m1 + m2)∙V
или
V = (m1v1 + m2v2)/(m1 + m2)
Напомним о векторном характере закона сохранения импульса. Импульсы mv, стоящие в числителе формулы, надо складывать как векторы.
«Объединяющий» удар при встрече движущихся под углом тел показан на рис. 3.2. Для того чтобы найти скорость, надо длину диагонали параллелограмма, построенного на векторах импульсов встречающихся тел, разделить на сумму их масс.