Понятно, что вес распределяется, и натяжение веревки будет в шесть раз меньше веса. Подъем груза массой в тонну потребует приложения силы в 1000/6 = 167 кгс. Однако нетрудно сообразить, что для подъема груза на 1 м придется выбрать 6 м веревки. Для подъема груза на 1 м нужно 1000 кгс∙м работы. Эту работу мы должны доставить в «любом виде» — сила в 1000/6 кгс должна действовать на пути 6 м, сила в 10 кгс — на пути в 100 м, сила в 1 кгс — на пути в 1 км.
Наклонная плоскость, о которой мы упоминали на стр. 30, также представляет собой приспособление, позволяющее выиграть в силе, проигрывая в пути.
Своеобразным способом умножения силы является удар. Удар молотком, топором, таран, да и просто удар кулаком может создать огромную силу. Секрет сильного удара несложен. Забивая молотком гвоздь в неподатливую стену, нужно как следует размахнуться.
Большой размах, т. е. большой путь, на котором действует сила, порождаем значительную кинетическую энергию молотка. Отдается эта энергия на малом пути. Если размах 1/2 м, а гвоздь вошел в стену на 1/2 см, то сила умножилась в 100 раз. Но если стена тверже и гвоздь при том же размахе руки вошел в стенку на 1/2 мм, то удар будет в 10 раз сильнее, чем в первом случае. В твердую стенку гвоздь войдет не так глубоко, и та же работа потеряется на меньшем пути. Выходит, что молоток работает, как автомат; бьет сильнее там, где труднее.
Если «разгонять» молоток массой в килограмм, то он ударит по гвоздю с силой в 100 кгс. А раскалывая дрова тяжелым колуном, мы ломаем дерево с силой в несколько тысяч кгс. Тяжелые кузнечные молоты падают с небольшой высоты — порядка одного метра. Расплющивая поковку на 1–2 мм, молот массой в 1000 кг обрушивается на нее с огромной силой — в 106 кгс.
Когда на предыдущих страницах мы решали задачи механики, в которых тело мысленно заменялось точкой, вопрос о сложении сил решался просто. Правило параллелограмма давало ответ на этот вопрос, а если силы были параллельны, то мы складывали их величины как числа.
Теперь дело обстоит сложнее. Ведь воздействие силы на предмет характеризуется не только ее величиной и направлением, но и точкой ее приложения, или — мы пояснили выше, что это одно и то же — линией действия силы.
Сложить силы — значит заменить их одной. Это возможно далеко не всегда.
Замена параллельных сил одной равнодействующей — задача, осуществимая всегда (за исключением одного особого случая, о котором будет сказано в конце этого параграфа). Рассмотрим сложение параллельных сил. Конечно, сумма сил в 3 кгс и 5 кгс равна 8 кгс, если силы смотрят в одну сторону. Задача состоит в том, чтобы найти точку приложения (линию действия) равнодействующей силы.
На рис. 5.6 изображены две действующие на тело силы.
Суммарная сила F заменяет силы F1 и F2, но это значит не только то, что F = F1 + F2, действие силы F будет равноценно действию F1 и F2 в том случае, если и момент силы F будет равен сумме моментов F1 и F2.
Мы ищем линию действия суммарной силы F. Конечно, она параллельна силам F1 и F2, но на каких расстояниях проходит эта линия от сил F1 и F2?
В качестве точки приложения силы F на рисунке изображена точка, которая лежит на отрезке, соединяющем точки приложения сил F1 и F2. По отношению к выбранной точке момент F, разумеется, равен нулю. Но тогда сумма моментов F1 и F2 по отношению к этой точке тоже должна равняться нулю, т. е. моменты сил F1 и F2, противоположные по знаку, будут равны по величине.
Обозначив буквами d1 и d2 плечи сил F1 и F2, можем записать это условие так:
F1d1 = F2d2, или F1/F2 = d2/d1.
Из подобия заштрихованных треугольников следует, что d2/d1 = l2/l1, т. е. точка приложения суммарной силы на соединительном отрезке делит расстояние между складываемыми силами на части l1 и l2, обратно пропорциональные силам.
Обозначим буквой l расстояние между точками приложения сил F1 и F2. Очевидно l = l1 + l2.
Решаем систему двух уравнений с двумя неизвестными:
F1l1 — F2l2 = 0
l1 + l2 = l
Получим:
l1 = F2l/(F1 + F2), l2 = F1l/(F1 + F2),
По этим формулам мы можем найти точку приложения равнодействующей силы не только в том случае, когда силы смотрят в одну сторону, но и в случае с силами, направленными в противоположные стороны (как говорят, антипараллельными). Если силы направлены в разные стороны, то они имеют противоположные знаки, и равнодействующая равна разности сил F1 - F2, а не их сумме. Считая отрицательной меньшую из двух сил F2, видим по нашим формулам, что l1 становится отрицательным. Это значит, что точка приложения силы F1 лежит не левее (как ранее), а правее точки приложения равнодействующей (рис. 5.7), при этом по-прежнему
F1/F2 = l2/l1
Интересный результат получается при равных антипараллельных силах. Тогда F1 + F2 = 0. Формулы показывают, что l1 и l2 становятся при этом бесконечно большими. Какой же физический смысл имеет это утверждение? Так как относить результирующую в бесконечность бессмысленно, то, значит, равные антипараллельные силы нельзя заменить одной. Такую комбинацию сил называют парой сил.
Действие пары сил нельзя свести к действию одной силы. Любые две параллельные или антипараллельные силы можно уравновесить одной, а пару сил — нельзя.
Разумеется, было бы неверным сказать, что силы, составляющие пару, уничтожают одна другую. Пара сил оказывает весьма существенное действие — вращает тело; особенность действия пары сил состоит в том, что она не дает поступательного движения.
В некоторых случаях может возникнуть вопрос не о сложении параллельных сил, а о разложении данной силы на две параллельные.
На рис. 5.8 изображены два человека, которые вместе несут на палке тяжелую корзину. Вес корзины раскладывается на обоих. Если груз давит на середину палки, то они оба испытывают одинаковую тяжесть. Если расстояние от точки приложения груза до рук, которые его несут, d1 и d2, то сила F разложится на силы F1 и F2 по правилу
F1/F2 = d2/d1
Кто сильнее, тот должен веяться за палку поближе к грузу.