На этом же принципе основаны движения балерины, совершающей быстрые, следующие один за другим повороты. Обычно начальный момент импульса придает балерине ее партнер. В этот момент корпус танцовщицы наклонен; начинается медленное вращение, затем изящное и быстрое движение — балерина выпрямляется. Теперь все точки тела находятся ближе к оси вращения, и сохранение момента импульса приводит к резкому увеличению скорости.

МОМЕНТ ИМПУЛЬСА КАК ВЕКТОР

До сих пор речь шла о величине момента импульса. Но момент импульса является вектором.

Рассмотрим вращение точки по отношению к какому-либо «центру». На рис. 5.14 изображены два близких положения точки.

Физические тела _79.jpg

Интересующее нас движение характеризуется моментом импульса и плоскостью, в которой оно происходит. Плоскость движения заштрихована на рисунке — это площадь, пройденная радиусом, приведенным из «центра» к движущейся точке.

Можно объединить сведения о направлении плоскости движения и о моменте импульса. Для этого служит вектор момента импульса, направленный вдоль нормали к плоскости движения и равный по величине абсолютному значению момента импульса. Однако это еще не все — нужно учесть направление движения в плоскости: ведь тело может поворачиваться около центра как по часовой стрелке, так и против нее.

Принято рисовать вектор момента импульса таким образом, чтобы, смотря против вектора, видеть поворот точки против часовой стрелки. Можно сказать и иначе: направление вектора момента импульса связано с направлением поворота так, как направление ввинчивающегося штопора связано с направлением движения его ручки.

Таким образом, если мы знаем вектор момента импульса, мы можем судить о величине момента импульса, о положении плоскости движения в пространстве и о направлении поворота по отношению к «центру».

Если движение происходит в одной и той же плоскости, но плечо и скорость меняются, то вектор момента импульса сохраняет свое направление в пространстве, но меняется по длине. А в случае произвольного движения вектор импульса меняется как по величине, так и по направлению.

Может показаться, что такое объединение в одном понятии направления плоскости движения и величины момента импульса служит лишь целям экономии слов. В действительности, однако, когда мы имеем дело с системой тел, которые движутся не в одной плоскости, мы получим закон сохранения момента импульса только тогда, когда будем складывать моменты импульсов как векторы.

Это обстоятельство и показывает, что приписывание векторного характера моменту импульса имеет глубокое содержание.

Момент импульса всегда определяется относительно какого-либо условно выбранного «центра». Естественно, что его величина, вообще говоря, зависит от выбора этой точки. Можно, однако, показать, что если рассматриваемая нами система тел как целое покоится (ее полный импульс равен нулю), то вектор момента импульса не зависит от выбора «центра». Этот момент импульса можно назвать внутренним моментом импульса системы тел.

Закон сохранения вектора момента импульса — третий и последний в механике закон сохранения. Однако мы не вполне точны, когда говорим о трех законах сохранения. Ведь импульс и момент импульса — это векторные величины, а закон сохранения векторной величины означает, что неизменной остается не только числовое значение величины, но и ее направление, иначе говоря, неизменными остаются три составляющих вектора по трем взаимно перпендикулярным направлениям в пространстве. Энергия — скалярная величина, импульс — векторная, момент импульса — также векторная. Поэтому точнее будет сказать, что в механике имеют место семь законов сохранения.

ВОЛЧКИ

Попробуйте поставить тарелку дном на тонкую трость и удержать ее в положении равновесия. Ничего не получится. Однако такой трюк является излюбленным номером китайских жонглеров. Им удается выполнить эту задачу, действуя одновременно с несколькими тросточками. Жонглер вовсе не старается удержать тонкие палочки в вертикальном положении. Кажется чудом, что тарелки, слегка опираясь на концы горизонтально наклоненных палок, не падают и почти висят в воздухе.

Если вам придется наблюдать за работой жонглеров вблизи, то обратите внимание на одну важнейшую вещь: жонглер закручивает тарелки так, чтобы они быстро вращались в своей плоскости.

Жонглируя булавами, кольцами, шляпами, — во всех случаях артист придает им вращение. Только в этом случае предметы возвращаются к нему в руки в том же положении, которое им было придано вначале.

В чем причина такой устойчивости вращения? Она связана с законом сохранения момента. Ведь при изменении направления оси вращения изменяется и направление вектора вращательного момента. Как нужна сила для изменения направления скорости, так нужен момент силы для изменения направления вращения, тем больший, чем быстрее вращается тело.

Стремление быстро вращающегося тела сохранять неизменным направление оси вращения может быть прослежено во многих случаях, подобных упомянутым. Так, вращающийся волчок не опрокидывается даже в том случае, если его ось наклонена.

Попробуйте рукой опрокинуть вертящийся волчок; оказывается, с ним не так-то легко справиться.

Устойчивость вращающегося тела используется в артиллерии. Вы слыхали, вероятно, что в стволе орудия делаются винтовые нарезы. Вылетающий снаряд вращается вокруг своей оси и благодаря этому не «кувыркается» в воздухе. Нарезное орудие дает несравненно лучшую прицельность и бóльшую дальность полета, чем ненарезное.

Летчику и морскому навигатору необходимо всегда знать, где находится истинная земная вертикаль по отношению к положению самолета или морского судна в данный момент. Использование отвеса не годится для этой цели, так как при ускоренном движении отвес отклоняется. Поэтому применяют быстро вращающийся волчок особой конструкции — его называют гирогоризонтом. Если установить его ось вращения на земную вертикаль, то она в таком положении и останется, как бы пи изменил самолет свое положение в пространстве.

Но на чем стоит волчок? Если он находится на подставке, которая поворачивается вместе с самолетом, то как же ось вращения сможет сохранить свое направление?

Подставкой служит устройство типа так называемого карданова подвеса (рис. 5.15). В этом устройстве при минимальном трении в опорах волчок может вести себя так, как будто он подвешен в воздухе.

Физические тела _80.jpg

При помощи вращающихся волчков можно автоматически поддерживать заданный курс торпеды или самолета. Это делается при помощи механизмов, «следящих» за отклонением направления оси торпеды от направления оси волчка.

На применении вращающегося волчка основано устройство такого важного прибора, как гирокомпас. Можно доказать, что под действием силы Кориолиса и сил трения ось волчка в конце концов устанавливается параллельно земной оси и, значит, указывает на север.

Гирокомпасы широко применяются в морском флоте. Главная их часть — мотор с тяжелым маховиком, делающим до 25 000 об/мин.

Несмотря на ряд трудностей в устранении различных помех, в частности от качки корабля, гирокомпасы имеют преимущество перед магнитными компасами. Недостаток последних — искажение показаний из-за влияния железных предметов и электрических установок на корабле.

ГИБКИЙ ВАЛ

Валы современных паровых турбин — важные части этих грандиозных машин. Изготовление таких валов, достигающих 10 м в длину и 0,5 и в поперечнике, — сложная технологическая задача. Вал мощной турбины может нести нагрузку около 200 т и вращаться со скоростью 3000 об/мин.


Перейти на страницу:
Изменить размер шрифта: