Имеется ряд фактов, которые позволяют утверждать следующее. В любых твердых телах атомные ядра не перемещаются. Электрический ток создается электронами. Электроны движутся под действием энергии, которая поставляется источником тока. Этот источник создает внутри твердого тела электрическое поле.
Формула, связывающая напряжение и напряженность электрического поля, остается в силе для любых проводников. Поэтому, объединяя формулы, приведенные на стр. 11 и 18, мы можем записать закон Ома для твердого проводника в форме:
j = σ∙Е
(σ = 1/ρ называется удельной электропроводностью).
Электроны твердого тела можно разделить на связанные и свободные. Связанные электроны принадлежат определенным атомам, свободные электроны образуют своего рода электронный газ. Эти электроны могут перемещаться по твердому телу. При отсутствии электрического напряжения поведение свободных электронов беспорядочно. Чем больше помех движению свободных электронов, чем чаще они сталкиваются с неподвижными атомами и друг с другом, тем больше электрическое сопротивление тела.
В диэлектриках подавляющее большинство электронов имеет своего хозяина — атом или молекулу. Число свободных электронов ничтожно.
В металлах каждый атом отдает один-два электрона в общее пользование. Этот электронный газ и является переносчиком тока.
Исходя из очень грубой модели, мы можем прикинуть величину электропроводности и проверить эту модель.
Так же, как мы это делали, когда вели рассуждения относительно газа молекул, предположим, что каждому электрону удается пройти без соударения некоторый путь l. Расстояние между атомами металла равно нескольким ангстремам. Логично допустить, что длина свободного, пробега электронов по порядку величины равна 10 А°, т. е. 10-7 см.
Под действием ускоряющей силы еЕ движение электрона происходит в течение времени l/v, где v — скорость электрона. Используя данные, взятые из исследований термоэлектронной эмиссии, хаотическую скорость электронов можно оцепить. Порядок величины этой скорости 108 см/с.
Чтобы определить скорость упорядоченного движения электронов, т. е. скорость того движения, которое создает ток, надо помножить ускорение еЕ/m на время свободного пробега. Этим допускается, что каждое соударение прекращает движение электрона, после чего он начинает набирать скорость вновь. Произведя умножение, мы получим значение скорости электронов, создающих ток:
u = e∙E∙l/m∙v
Теперь поставим перед собой задачу вычислить удельное сопротивление металла. Если получим правильный порядок величины, то значит наша модель «работает».
Предоставим читателю сообразить, что плотность тока) может быть записана как произведение числа электронов в единице объема на заряд электрона и на упорядоченную скорость: j = n∙е∙u. Подставляя в эту формулу значение упорядоченной скорости электронов, поручим: j = (n∙e2∙l/m∙v)∙Е, т. е. удельная электропроводность равна
σ = n∙e2∙l/m∙v
Если считать, что каждый атом отдает в общее пользование один электрон, то получится, что проводник имеет удельное сопротивление порядка 10-5 Ом∙м. Очень разумная величина! Она подтверждает как справедливость грубой модели, так и правильность выбора значения параметров нашей «теорий». Я ставлю слово «теория» в кавычки лишь по той причине, что она груба и элементарна. Однако этот пример иллюстрирует типичный физический подход к истолкованию явлений.
Согласно теории свободного электронного газа электрическое сопротивление должно уменьшаться с падением температуры. Только не торопитесь связывать это обстоятельство с изменением хаотической скорости движения электронов. Дело не в ней. Эта скорость мало зависит от температуры. Уменьшение сопротивления связано с тем, что размах колебаний атомов становится меньше, а благодаря этому растет длина свободного пробега электронов.
Этот же факт можно передать и такими словами: при увеличении амплитуд колебания атомов электроны в большей степени рассеиваются в разные стороны. Конечно, благодаря этому слагающая скорости в направлении тока должна уменьшиться, т. е. сопротивление должно возрасти.
Увеличением рассеяния электронов объясняют также возрастание сопротивления металла (и не только металла) с добавлением примесей. Действительно, примесные атомы играют роль дефектов кристаллической структуры и следовательно способствуют рассеянию электронов.
Электрическая энергия передастся по проводам. Из-за электрического сопротивления провода забирают энергию у источника тока. Потери эти огромны, и борьба с ними представляет собой важнейшую техническую задачу.
Есть надежда, что эта задача может быть решена, ибо существует замечательное явление сверхпроводимости.
Голландским физиком Камерлинг-Оннесом в 1911 г. было обнаружено, что при температурах, близких к абсолютному нулю, некоторые тела скачком теряют практически полностью свое электрическое сопротивление. Если в кольце сверхпроводника возбудить электрический ток, то он будет течь в проводнике сутками, не затухая. Из чистых металлов наиболее высокой температурой, при которой проявляются сверхпроводящие свойства, обладает ниобий (9 К). Не приходится и говорить, сколь настойчиво занят огромный отряд ученых поиском сверхпроводников, которые приобрели бы это замечательное свойство при более высокой температуре. Пока что успехи не очень велики. Найден сплав, который как будто становится сверхпроводящим при температуре около 20 К.
Однако есть основания полагать, что этот предел можно будет повысить (а может быть и довести до комнатных температур). Поиск ведется среди особых полимерных веществ, среди сложных слоистых материалов, в которых диэлектрик чередуется с металлом. Трудно переоценить значимость этой проблемы. Я беру на себя смелость считать ее одной из важнейших проблем современной физики.
Работы по поиску сверхпроводников, приобретающих это свойство при достаточно высоких температурах, приняли большой размах после того, как была построена теория этого явления. Теория подсказала пути поиска нужных материалов.
Характерно, что между открытием явления и его объяснением прошло очень много времени. Теория была создана в 1957 г. Надо отметить, что законы квантовой физики, с помощью которых построена теория сверхпроводимости, были установлены еще в 1926 г. Из этого следует, что объяснение явления было далеко не простым. В этой книжке я могу лишь дать объяснение, так сказать, с середины истории. Оказывается, что по мере замедления колебаний атомной решетки некоторым электронам удается «спариться». Такая «пара» ведет себя согласованно. Когда происходит рассеяние пары на атомах (а именно это рассеяние и есть, как мы говорили выше, причина сопротивления), то отскакивание одного из членов пары в сторону компенсируется поведением его «друга». Компенсируется в том смысле, что суммарный импульс пары электронов остается неизменным. Таким образом, рассеяние электронов не исчезает, но перестает влиять на прохождение тока.
Наряду со спаренными электронами в сверхпроводнике существует и обычный электронный газ. Таким образом, одновременно существуют как бы две жидкости — одна обычная, другая сверхпроводящая. Если температура сверхпроводника начинает повышаться от нуля, то тепловое движение будет разрывать все большее число «пар» электронов — доля обычного электронного газа будет расти. Наконец наступит критическая температура, при которой исчезнут последние спаренные электроны.
С помощью модели двух жидкостей, обычной и особенной, мы объяснили во второй книге явление сверхтекучести, наблюдаемое в жидком гелии. Эти два явления находятся в близком родстве: сверхпроводимость — это сверхтекучесть электронной жидкости.
Пара электронов, о которой мы только что сказали, имеет суммарный спин нуль. Частицы, спин которых равен нулю или целому числу, называются бозонами. При известных условиях бозоны могут собираться в больших количествах на одном и том же энергетическом уровне. В этом случае их движение становится идеально согласованным и их перемещению ничто не может помешать. Мы еще вернемся к этому явлению в четвертой книге.