Ну что же, это соображение можно считать обоснованием выбора слова. Чем больше напрягается человек, который тащит тележку с грузом, тем более жарко ему становится. Итак, обозначая напряжение, как это принято ныне, буквой U, получим:
U = Q/q, или Q = U∙I∙τ.
Итак, первые шаги сделаны. Обнаружены два явления. Ток выделяет вещество при прохождении через некоторые жидкости, ток выделяет тепло. Мерять тепло мы умеем. Способ измерения количества электричества дан, т. е. дано определение этого понятия. Кроме того даны определения производных понятий — силы тока и напряжения.
Написан ряд простых формул. Но прошу обратить внимание: они не могут быть названы законами природы. В частности, исследователь назвал отношение Q/q напряжением, а не нашел, что Q/q равно напряжению.
А вот сейчас он приступает к поиску закона природы. Для одного истого же проводника можно независимо измерить две величины: силу тока и тепло, или силу тока и напряжение (что в принципе одно и то же).
Исследования зависимости силы тока от напряжения приводят к открытию важного закона. Подавляющее большинство проводников подчиняется закону:
U = I∙R.
Величине R можно дать название сопротивления, в полном соответствии с начальными качественными наблюдениями. Читателю знакома запись: это закон Ома. Подставляя значение силы тока из выражений закона Ома в предыдущую формулу, мы находим:
Q = (U2/R)∙τ
Надеюсь, что вас не спутает возможность записать выражение энергии, выделяемой проводником в форме тепла, и иначе:
Q = I2∙R∙τ.
Из первой формулы следует, что количество тепла обратно пропорционально сопротивлению. Говоря эту фразу, надо добавить: при неизменном напряжении. Именно этот случай мы и имели в виду, когда впервые воспользовались термином «сопротивление». А вот вторая формула, утверждающая, что тепло прямо пропорционально сопротивлению, требует, чтобы вы добавили: при постоянной силе тока.
В написанных выражениях читатель узнает закон, который носит имена Джоуля и Ленца.
Выяснив, что напряжение и сила тока пропорциональны, и получив, таким образом, возможность определять сопротивление проводника, исследователь естественно задается вопросом, как связана эта важная величина с формой и размером проводника и с веществом, из которого он сделан.
Опыты приводят к следующему открытию. Оказывается, что
R = ρ∙l/S,
где l — длина проводника, a S — его поперечное сечение. Это простейшее выражение справедливо тогда, когда мы имеем дело с линейным проводником неизменного сечения по всей своей длине. При желании, прибегнув к более сложным математическим операциям, можно записать формулу сопротивления для проводника любой формы. Ну, а что это за коэффициент ρ? Он характеризует материал, из которого изготовлен проводник. Значение этой величины, которая получила название удельного сопротивления, колеблется в очень больших пределах. По величинам ρ вещества могут отличаться в миллиарды раз.
Проделаем еще несколько формальных преобразований, которые пригодятся в дальнейшем. Закон Ома можно записать в такой форме:
I = U∙S/ρ∙l
Приходится часто встречаться с отношением силы тока к площади сечения проводника. Его называют плотностью тока и обозначают обычно буквой j. Теперь тот же закон запишется так:
j = (1/ρ)∙(U/l)
Исследователю кажется, что с законом Ома ему все ясно. Располагая неограниченным количеством проводников, сопротивление которых известно, можно отказаться от громоздких определений напряжения с помощью калориметра: напряжение ведь равно произведению силы тока — на сопротивление.
Однако ученый быстро находит, что это утверждение нуждается в уточнении. Используя один и тот же источник тока, он замыкает его полюса различными сопротивлениями. Сила тока, естественно, при каждом опыте будет разной. Но оказывается, что и произведение силы тока на сопротивление I∙R не остается одним и тем же. Занявшись изучением этого, пока что непонятного, явления, исследователь обнаруживает, что по мере увеличения сопротивления произведение I∙R стремится к некоторой постоянной величине.
Обозначив этот предел через
мы находим формулу, не совпадающую с той, которая была установлена прямыми измерениями силы, тока и напряжения. Новая формула имеет вид:Что
странное противоречие?Приходится подумать. Ну, конечно, противоречие кажущееся. Ведь непосредственное измерение напряжения калориметрическим способом относилось только к проводу, замыкающему аккумулятор. А ведь ясно, что тепло выделяется и в самом аккумуляторе (для того, чтобы в этом убедиться, достаточно дотронуться до аккумулятора рукой). Аккумулятор обладает своим сопротивлением. Смысл величины r, стоящей в новой формуле, очевиден: это внутреннее сопротивление источника тока. Что же касается величины то для нее нужно особое название. Нельзя сказать, что выбор был особенно удачным: величину
называют электродвижущей силой (ЭДС), хотя она не имеет ни смысла, ни размерности силы.За обеими формулами сохранили (при этом надо сказать, что историческая справедливость была соблюдена) название законов Ома. Только первую формулу называют законом Ома для участка цепи, а вторую — законом Ома для полной цепи.
Ну, теперь уж, кажется, все ясно. Законы постоянного тока установлены.
Но исследователь все же не удовлетворен. И без непосредственного измерения напряжения калориметром исследование остается громоздким. Каждый раз взвешивать катод с осадком меди! Согласитесь, что это крайне неудобно.
В один воистину прекрасный день исследователь, совершенно случайно, поставил около проводника с током магнитную стрелку. И сделал великое открытие: стрелка поворачивается, когда идет ток, и при этом в разные стороны в зависимости от направления тока.
Определять момент силы, действующий на магнитную стрелку, несложно. На основе открытого явления можно создать измерительный прибор. Надо только установить характер зависимости момента от силы тока. Исследователь решает эту задачу и конструирует превосходные стрелочные приборы, которые позволяют мерять силу тока и напряжение.
Однако наш рассказ о том, что сделал исследователь за первую половину девятнадцатого века, изучая законы постоянного тока, был бы неполным, если бы мы не сказали, что он обнаружил взаимодействие токов: токи, идущие в одну сторону, притягиваются, в разные — отталкиваются. Разумеется, и это явление можно использовать для того, чтобы измерять силу тока.
Конечно, я не ограничусь последними абзацами, говоря о законах электромагнетизма; ему посвящена отдельная глава. Но мне необходимо было напомнить эти важные факты для того, чтобы выполнить задачу данной главы, цель которой — рассказать, как вводятся основные количественные понятия и единицы измерения, характеризующие электрические явления: ток, заряд и поле.
Будем считать, что нашему идеальному исследователю известны разнообразные явления, получившие названия электрических в давние времена. Особые свойства янтаря, стеклянной палочки, натертой мехом, создание искры, проскакивающей между двумя телами, приведенными в «электризованное» состояние, изучались (а лучше сказать — использовались для эффектных демонстраций) уже достаточно давно. Поэтому, естественно, у исследователя, который приступил к изучению электрического тока, возник вопрос: тот флюид, который течет по проводу, и тот, который может пребывать в неподвижном состоянии на каком-либо теле до тех пор, пока его не «разряжают», это одно и то же «нечто»?