Ну, а что же принять за меру «интенсивности» магнитного поля? Можно, конечно, измерять с помощью простого устройства момент силы, действующий на магнитную стрелку. Но, пожалуй, стоит поискать другой способ. Ведь магнитная стрелка своего — рода «вещь в себе». Проводя опыты с магнитной стрелкой, мы должны одновременно искать меру «интенсивности» магнитного поля и меру, характеризующую стрелку. Такой ситуации физики предпочитают избегать. Лучше погнаться сначала за одним зайцем, а потом за другим.
Итак, сохраним пока что за магнитной стрелкой функцию определения рисунка силовых линий. А для введения количественной меры «интенсивности» магнитного поля обратимся к одному из опытов Ампера, который еще в 1820 г. обнаружил, что контур тока ведет себя очень похоже на магнитную стрелку. А именно, контур тока поворачивается в магнитном поле, причем нормаль к его плоскости смотрит туда же, куда и магнитная стрелка, т. е. вдоль силовых линий. Роль северного полюса играет та сторона контура тока, смотря на которую мы видим ток идущим против часовой стрелки.
В отличие от магнитной стрелки, контур тока не является объектом, Который непонятно как характеризовать. Свойства контура тока однозначно определяются силой тока, площадью и направлением нормали к площади. Надо думать, что такой контур явится не плохим прибором для прощупывания магнитного поля.
Итак, мы решаем принять за меру «интенсивности» магнитного поля вращательный момент, действующий на контур тока. Не следует думать, что такой прибор менее удобен, чем магнитная стрелка. Хороший экспериментатор может изготовить контур крошечной площади, придумает простой метод уравновешивания поворота, который совершает поле, сжатием калиброванной пружины.
Прежде всего нам нужно выяснить поведение разных пробных контуров в какой-то определенной точке неизменного магнитного поля.
Результат этого исследования таков: момент силы пропорционален произведению силы тока на площадь. Значит пробный контур характеризуется не силой тока и площадью самими по себе, а их произведением.
Кроме этого произведения нам надо знать, как расположена нормаль контура по отношению к направлению поля. Ведь контур ведет себя наподобие магнитной стрелки. Поэтому, если установить контур так, чтобы его положительная нормаль (т. е. вектор, выходящий с северной стороны) смотрела вдоль силовых линий, то он в этом положении и останется (момент силы равен пулю) (рис. 3.1, внизу). Если расположить его так, чтобы нормаль была перпендикулярна к силовым линиям, то момент силы будет максимальным (рис. 3.1, вверху).
Из всего сказанного следует целесообразность введения нового понятия. Понятия, как мы поймем ниже, очень важного. Мы будем характеризовать контур тока вектором М, который назовем магнитным моментом (см. рис. 3.1). Величина магнитного момента принимается равной произведению силы тока I на площадь контура S = l∙d:
M = I∙S.
Вектору S придается направление положительной нормали к плоскости контура.
Итак, мы обладаем прибором, с помощью которого можно измерять поле. Удобнее всего измерять максимальный момент силы, действующий на пробный контур.
Переходя от одной точки поля к другой или меняя поле за счет перемещения его источников или изменяя силы токов, создающих поле, мы будем получать все время различные значения момента пары сил F, действующих на пробный контур. Максимальное значение момента силы можно записать так:
N = В∙М,
где В — величина, которую мы и примем за меру поля.
Она называется магнитной индукцией. Итак, магнитная индукция равна максимальному моменту силы, действующему на пробный контур с единичным магнитным моментом.
Густоту силовых линий, т. е. их число, приходящееся на единицу площади, мы и примем пропорциональной величине В. Вектор В направлен вдоль силовых линий.
Магнитный момент, магнитная индукция и наш старый знакомый момент силы являются векторами. Но немного призадумавшись, мы должны будем согласиться с тем, что эти вектора отличаются от векторов смещения, скорости, ускорения, силы… Действительно, вектор, скажем, скорости движения тела указывает, в какую сторону тело движется; вектора ускорения и силы показывают, в каком направлении действует притяжение или отталкивание. Стрелочка, которой мы заканчиваем отрезок, символизирующий вектор, имеет в этих примерах вполне объективный и реальный смысл. Что же касается наших новых знакомцев и момента силы, то здесь дело обстоит иначе. Вектора направлены вдоль оси вращения. Ясно, что стрелка, поставленная на том или ином конце отрезка, характеризующего ось вращения, носит совершенно условный характер. Однако условиться о направлении вектора необходимо. Стрелка на «конце» оси вращения смысла не имеет. Но объективный смысл имеет направление вращения. Это-то нам и надо характеризовать. Уславливаются снабжать ось вращения стрелкой так, чтобы, смотря против вектора, видеть вращение либо по, либо против часовой стрелки. Физики привыкли ко второму варианту.
Эти два типа векторов носят выразительные и говорящие сами за себя названия: полярные и аксиальные («аксе» в переводе значит ось) вектора.
Измерения полей различных систем приводят нас к следующим правилам. В магнитах мы всегда обнаруживаем два полюса: северный, из которого силовые линии выходят, и южный, на котором они заканчиваются. Что происходит с силовыми линиями внутри магнита, мы, естественно, не можем определить опытом.
Что же касается магнитных полей токов (рис. 3.2), то здесь обнаруживается такая закономерность: магнитные силовые линии оборачиваются около тока. При этом если смотреть вдоль тока, то силовые линии будут иметь направление, в котором движется часовая стрелка. Точка и крестик на рисунках обозначают (это общепринято), что ток идет к нам и от нас.
Магнитный момент, как это очевидно из формулы, измеряется в амперах, умноженных на квадратный метр.
Единицей магнитной индукции является тесла. Один тесла равен 1 кг/(А∙с2).
Магнитные поля создаются токами и постоянными магнитами. Магнитные поля действуют на токи и постоянные магниты. Если почему либо исследователь не хочет прибегать к понятию магнитного поля, то он может разбить все виды взаимодействий, в которых принимают участие магнитные поля, на четыре группы: магнитные, т. е. действия магнита на магнит; электромагнитные, т. е. действия токов на магнит; магнитоэлектрические, т. е. действия магнита на ток; и, наконец, электродинамические, т. е. действия тока на ток.
В основном этой терминологией пользуются техники. Скажем, они называют прибор магнитоэлектрическим тогда, когда магнит закреплен, а рамка с током подвижная.
Электродинамические взаимодействия положены в основу современного определения единицы силы тока. Вот как звучит это определение: ампер есть сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2∙10-7 ньютона на один метр длины.
В принятой теперь всем миром системе СИ единица силы тока является основной. Соответственно кулон определяется как ампер-секунда. Должен признаться читателю, что мне больше нравится такая система единиц, в которой единица количества электричества является основной и выраженной через массу осаждаемого при электролизе серебра. Но метрологам виднее. Видимо, у приведенного выше определения есть, какие-то достоинства, хотя, мне кажется, практическое измерение электродинамической силы с большой точностью — далеко не простая задача.