Пожалуй, наиболее убийственным доводом против наглядности является то, что нейтрон, который не несет на себе электрического заряда, обладает спином. Почему же этот довод является решающим? Судите сами.
Если частицу можно было бы представлять в виде заряженной сферы, то ее вращение около оси давало бы нечто вроде амперова тока. Но раз, уж нейтральная частица обладает, моментом импульса, а также и магнитным моментом (об этих свойствах нейтрона мы скажем несколько слов в четвертой книге), об аналогии с амперовым током не может быть и речи.
Конечно, не стоит становиться в позу пророка и говорить, что никогда не удастся объяснить спин и магнитный момент элементарных частиц, исходя из какого-то более общего, пока что не открытого закона (частично эта задача решается теорией замечательного английского физика Поля Дирака; но о ней мы не можем дать читателю даже общее представление — уж слишком она абстрактна). Однако сегодня мы должны считать «стрелочки», изображающие момент импульса и магнитный момент частицы, первичными (не сводящимися к чему-либо более простому) понятиями.
Лет пятьдесят назад большинство физиков держалось точки зрения Эйнштейна, который писал: «Всякая физическая теория должна быть такой, чтобы ее, помимо всяких расчетов, можно было проиллюстрировать с помощью простейших образов». Увы, мнение великого человека оказалось неверным. И уже много лет физики спокойно оперируют теориями, в которых фигурируют измеряемые величины, которым мы не можем сопоставить зрительного образа.
У электрона и других элементарных частиц нет «полюсов». В ряде случаев мы уверенно говорим об этих частицах как точечных, соглашаемся с тем, что понятие формы к элементарным частицам неприменимо, и, тем не менее, мы вынуждены приписать частицам, два векторных свойства — момент импульса (спин) и магнитный момент. Эти два вектора всегда лежат вдоль одной линии. Иногда они параллельны, а в других случаях аптипараллельны.
Опыт показывает, что общие формулы для проекций момента импульса и магнитного момента, которые мы привели на стр. 100, справедливы и для собственных моментов. Все эксперименты, как спектральные, так и по расщеплению пучков атомов в неоднородном магнитном поле, безупречно истолковываются, если для электрона числу и в формуле для проекции момента импульса разрешить принимать два значения: ± 1/2.
Что же касается формулы для проекции магнитного момента, то здесь число m может принимать два значения: ±1.
Спин электрона имеет численное значение 1/2 h/2π может располагаться лишь в двух направлениях — вдоль поля и против поля. Что же касается магнитного момента электрона, то он, следуя за спином, также может иметь лишь две ориентации в поле, а численное его значение равно одному магнетону Бора.
Перейдем теперь к объяснению результатов опытов с атомными пучками. Покажем, как легко разъясняются с помощью понятия спина все особенности расщепления атомных пучков.
Действительно, как понять, что пучки атомов гелия и бериллия не расщепляются? Вот как. Орбитальный момент у электронов этих атомов отсутствует по той причине, что они относятся к «сорту» s. Что же касается спинов электронов, то они смотрят в противоположные стороны. Вообще-то говоря, это утверждение ниоткуда не вытекает, хотя интуитивно предваряется вполне естественным. Принцип, по которому пара электронов в атоме устраивается так, чтобы направления спинов были противоположны, носит название принципа Вольфганга Паули (1900–1958).
Как много гипотез!.. Да, не мало. Но все они вместе образуют стройное здание квантовой физики, из которой вытекает столь много следствий, что ни малейшего сомнения в справедливости того, что электрону надо приписать спин, что значение спинового числа надо положить равным 1/2 и что спины пары-электронов надо подчинить принципу Паули, ни тени сомнения на этот счет не остается ни у одного физика. Сумма этих гипотез отражает структуру микромира.
Вернемся к нашим атомным пучкам. Мы объяснили, почему не расщепляются потоки атомов гелия и бериллия.
Ну, а как ведут себя водород и литий?
У водорода один электрон. Орбитальный момент его равен нулю, поскольку это s-электрон. Проекция спи-электрона может принять лишь два значения: плюс 1/2 и минус 1/2, т. е. спин может установиться против или вдоль направления магнитного поля. Поэтому поток атомов и расщепится на две компоненты. То же самое произойдет с атомами лития, поскольку два электрона «скомпенсируют» свои спины, а третий будет вести себя так же, как единственный электрон атома водорода.
Точно так же будут вести себя атомы и других элементов, которые содержат в верхней оболочке один неспаренный электрон.
Мне потребовалось бы привести без доказательства еще некоторые теоремы, доказываемые в квантовой физике, для того, чтобы для атомов других элементов объяснить расщепления на большое число компонент. Учитывая, что лишь s-электроны не обладают орбитальным моментом и что спин электрона проявит себя лишь в том случае, когда электрон находится на своем энергетическом уровне в одиночестве, физики сумели полностью объяснить поведение потоков атомов всех сортов. Изучив эту увлекательную главу физики, даже самый большой скептик уверится в том, что все бездоказательные предположения, которые приняты в квантовой физике, являются общими законами природы.
Боюсь, что многие читатели останутся неудовлетворенными этими фразами. Конечно, только опытов по отклонению атомных пучков в неоднородном магнитном поле недостаточно для того, чтобы ввести такое «странное» понятие, как спин. Но книга наша уж слишком маленькая, чтобы я мог привести огромное количество фактов, которые требуют признания за спином прав гражданства.
Чего, например, стоит не имеющее ничего общего с рассказанным явление магнитного резонанса. Радиоволны сантиметрового диапазона поглощаются веществом, когда им приходится перевернуть спин. Энергия взаимодействия магнитного момента электрона с постоянным магнитным полем, в которое помещают вещество в опытах по магнитному резонансу, а значит и разность двух энергий (параллельное расположение и антипараллельное расположение) вычисляются без труда. Эта разность равна кванту поглощаемой электромагнитной волны. С огромной точностью мы определяем значение частоты волны из эксперимента и убеждаемся в абсолютном совпадении этого значения с тем, которое мы вычислили, зная индукцию поля и величину магнитного момента электрона.
Это явление лежит в основе большого раздела науки: учения об электронном резонансе. Замечательно, что те же события, но, естественно, в другом диапазоне длин волн наблюдаются для атомных ядер. Ядерный магнитный резонанс является важнейшим методом изучения химического строения вещества.
Прежде чем пойти дальше, будет, пожалуй, полезно подвести итог всем фактам, которые касаются систем, создающих магнитные поля и откликающихся на присутствие магнитного поля.
Прежде всего надо подчеркнуть еще раз, что гипотеза Ампера оказалась лишь частично справедливой: магнитные поля создаются не только движущимися электрическими зарядами. Другим источником магнитного поля являются элементарные частицы и в первую очередь электроны, обладающие собственным магнитным моментом. Техническая классификация взаимодействий, приведенная на стр. 90, оказывается несовершенной. Магнитные поля создаются естественными и искусственными магнитами, электрическими токами (в том числе и потоками электрических частиц в вакууме), а также элементарными частицами. Эти же системы, а также частицы, подвержены действию магнитного поля.
Основной величиной, которая характеризует магнитное поле и его действия, является вектор магнитного момента. В случае токов этот вектор определяется формой контура тока. Момент стрелки сложным образом связан с атомным строением вещества, но его нетрудно измерить. Электроны, движущиеся в поле ядра, обладают «орбитальным» магнитным моментом, как если бы (обратите, пожалуйста, внимание на это «как если бы») их движение вокруг ядра создавало бы электрический ток. И, наконец, собственный магнитный момент является первичным свойством, которое характеризует элементарные частицы.