Звучное и красивое название «фотон» появилось несколько позже, чем произведение постоянной Планка h на частоту электромагнитной волны v. Как мы сказали выше, переход системы из одного энергетического состояния в другое сопровождается поглощением или излучением порции энергии hv. К такому заключению на рубеже нашего и предыдущего столетий пришел замечательный немецкий физик Макс Планк. Он показал, что только таким способом удается истолковать излучение раскаленных тел. Рассуждения относились к электромагнитным волнам, получаемым нерадиотехническим способом. В то время еще не было доказано и не было всеми признано, что то, что справедливо для света, верно и для радиоволн, хотя законы Максвелла указывали со всей определенностью, что между радиоволнами и другими электромагнитными волнами, в том числе светом, нет никакого принципиального различия. Понимание и экспериментальные доказательства универсальной справедливости утверждения Планка пришли позже.
В работе Планка шла речь об излучении света порциями, т. е. квантами. Однако в ней не отмечалось, что квантовый характер излучения делает неизбежным введение в рассмотрение корпускулярного аспекта электромагнитного поля. Да, говорилось в то время, поле излучается порциями, но порция есть некоторый цуг волн.
Важнейший шаг, т. е. признание того, что излученная порция энергии hv есть энергия частицы, которую сразу окрестили фотоном, был сделан Эйнштейном, показавшим, что только с помощью корпускулярных представлений можно объяснить явление фотоэлектрического эффекта, т. е. выбивание электронов из твердых тел под действием света.
На рис. 5.4 изображена схема, с помощью которой в конце прошлого века началось детальное изучение явления, названного внешним фотоэффектом.
Впервые на то, что свет как-то влияет на электроды вакуумной трубки, указал, видимо, Генрих Герц в 1888 г. Работая одновременно, Сванте Аррениус (1859–1927), Вильгельм Гальвакс (1859–1922), Аугусто Риги (1850–1920) и прекрасный русский физик Александр Григорьевич Столетов (1839–1896) показали, что освещение катода приводит к возникновению тока. Если к показанной на рисунке трубке (ее называют фотоэлементом) напряжение не приложено, то лишь незначительная часть электронов, выбитых светом из катода, доберется до противоположного электрода. Слабое подгоняющее напряжение (минус на фотокатоде) увеличит ток. В конце концов ток достигнет насыщения: все электроны (число которых приданной температуре вполне определенно) достигают анода.
Сила фототока строго пропорциональна интенсивности света. Интенсивность света однозначно определяется числом фотонов. Сразу же приходит в голову мысль (строгие расчеты и опыты подтверждают ее), что один фотон выбивает из вещества один электрон.
Энергия фотона идет на то, чтобы вырвать электрон из металла и придать ему скорость. Именно так и понимается уравнение, которое впервые было записано Альбертом Эйнштейном (1905). Вот это уравнение:
h∙v = (m∙v2/2) + A
где А — работа выхода (см. стр. 74).
Энергия фотона должна быть во всяком случае больше работы выхода электронов из металла. А это значит, что для фотона каждой энергии (а энергия однозначно связана с «цветностью») существует своя граница фотоэффекта.
Фотоэлементы, использующие описанный нами внешний фотоэффект, широко распространены. Они употребляются в фотореле, телевидении, звуковом кино.
Чувствительность фотоэлементов можно повысить, заполняя их газом. В этом случае ток усиливается разламыванием электронами нейтральных молекул газа и приобщением их к фототоку.
Фотоэлектрический эффект, правда не тот, который мы описали, а так называемый внутренний фотоэффект, происходящий в полупроводниках на границе p-n-слоя, играет исключительно важную роль в современной технике. Но, чтобы не перебивать изложения, мы отложим разговор о прикладном значении фотоэффекта до следующей книги. Сейчас рассмотрение этого явления нам понадобилось лишь для того, чтобы показать неизбежность признания корпускулярных свойств у электромагнитного поля.
Долгое время фотоны были неприкаянными пасынками физики. Ведь доказательство существования фотона и исследование законов фотоэффекта на 20–30 лет опередило становление квантовой физики. Только в конце двадцатых годов, когда эти законы были установлены, стало попятным, почему одна и та же числовая константа — постоянная Планка h — появляется в формуле энергии фотона и в формуле, о которой шла речь на странице 100, определяющей возможные значения момента импульса частиц.
Значение этой постоянной определяется из самых различных опытов. Фотоэлектрический эффект, так называемый эффект Комптона (изменение длины волны рентгеновских лучей при рассеянии), возникновение излучения при аннигиляции частиц — все эти и многие другие опыты приводят к одному и тому же числу.
Теперь обратимся к тому, как были доказаны гипотезы, касающиеся волнового аспекта электромагнитного поля.
Из законов Максвелла логика и математика вытягивают следствия. Эти следствия могли оказаться верными, а могли бы и не подтвердиться на опыте. Физическая теория входит в науку только после ее экспериментальной проверки. Путь становления теории электромагнитного поля: от разрозненных фактов к общим гипотезам, от гипотез к следствиям и последний этап — эксперимент, который говорит свое решающее слово, — единственная правильная дорога естествоиспытателя. На примере законов электромагнитного поля, эта дорога прослеживается особенно четко.
Поэтому мы и остановимся детально на опытах Герца, которые и сегодня помогают преподавателю показать школьнику или студенту, как создается уверенность ученого в справедливости законов природы.
Историю придется начать с 1853 г., когда знаменитый английский физик Кельвин математически доказал, что при разряде конденсатора через катушку самоиндукции в цепи возникают электрические колебания: заряд на обкладках конденсатора, напряжение на любом участке цепи, сила тока — все эти величины будут меняться по закону гармонического колебания. Если считать, что сопротивление в цепи ничтожное, то эти колебания будут продолжаться вечно.
На рис. 5.5 изображена картинка, поясняющая явления, которые происходят в этом так называемом колебательном контуре.
В начальный момент времени конденсатор заряжен. Как только цепь будет, замкнута, по ней потечет ток. Через четверть периода конденсатор будет полностью разряжен. Его энергия 1/2 q2/C перейдет в энергию магнитного поля катушки. Сила тока в этот момент будет максимальна. Ток не прекратится, а будет продолжать идти в том же направлении, постепенно уменьшая свою силу. Через полпериода сила тока обратится в нуль, магнитная энергия 1/2 L∙I2 пропадет, а конденсатор полностью зарядится и возвратит свою энергию. Однако напряжение сменит знак. Далее процесс повторится, так сказать, в обратном направлении. Через некое время Т (период колебания) все вернется к исходному состоянию и процесс начнется снова.
Электрические колебания продолжались бы до бесконечности, если бы не неизбежное сопротивление току. Из-за него при каждом периоде энергия будет теряться и колебания, уменьшаясь по амплитуде, быстро затухнут.
Бросающаяся в глаза аналогия с колебаниями груза на пружине позволяет нам обойтись без алгебраического рассмотрения процесса и сообразить, каков будет период колебаний в таком контуре. (Читателю надо освежить в памяти соответствующие страницы первой книги.) Действительно, достаточно очевидно, что электрическая энергия конденсатора эквивалентна потенциальной энергии сжатой пружины, а магнитная энергия катушки — кинетической энергии грузика.