Давайте соединим две пластины конденсатора проводником. При перенесении по проводнику количества электричества q выделяется энергия qU. Поскольку мы догадываемся, что нет принципиального различия между движением заряженного шарика в электрическом поле и перемещением электрической «жидкости» вдоль металлического проводника, то мы приравниваем эти два выражения энергии, затраченной полем:

qEl = qU.

Справедливость написанного выражения можно легко проверить, раздвигая пластины конденсатора и измеряя силу, действующую на пробный заряд.

Это измерение можно провести очень изящным способом, вовсе не прибегая к подвешиванию заряженного шарика на шелковую нить.

Всем хорошо известно, что легкие тела падают вниз значительно медленнее, чем тяжелые. Напомним, что именно по этой причине до опытов Галилея мудрецы античности и средних веков полагали, что скорость движения тела (а не ускорение) пропорциональна силе. Ошибочность этой точки зрения была наглядно продемонстрирована лишь тогда, когда посмотрели, как падают кусочки бумажки и металлический шарик в вертикальной трубке, из которой откачан воздух. Оказалось, что все тела набирают скорость одинаково быстро, т. е. падают на Землю с одним и тем же ускорением. Но сейчас нам как рае имеет смысл «включить» влияние воздуха, сопротивление которого приведет к тому, что легкий пустотелый металлический шарик, с помощью которого мы демонстрировали закон Кулона, будет падать вниз очень медленно.

Если заставить его падать тогда, когда он находится между пластинами конденсатора, то, меняя напряжение между пластинами, можно подобрать такое поле, которое остановит падение шарика. Равновесие осуществляется при условии, что сила тяжести равна силе поля, mg = qE. Из этого равенства можно найти значение напряженности поля и подтвердить правильность наших теоретических рассуждений.

Число силовых линий, проходящих через любую мысленную или реальную поверхность, находящуюся в электрическом поле, называется силовым потоком. Чему равен силовой поток, который проходит через замкнутую поверхность, охватывающую заряженные тела?

Сначала рассмотрим самый простой случай: поле создано одним маленьким шариком. Проведем сферу около шарика. Если радиус сферы R, то напряженность в любой точке поверхности сферы равна Kq/R2. Площадь сферы равна 4πR2. Значит силовой поток, проходящий через сферу, будет равен 4π∙Kq. Но ясно, что поток останется тем же, если мы возьмем любую другую поверхность.

Теперь усложним картину и допустим, что поле создается большим числом заряженных тел любой формы. Но ведь их можно мысленно разбить на крошечные участки, каждый из которых эквивалентен точечному заряду. Обведем систему зарядов произвольной поверхностью. Поток от каждого заряда равен 4π∙Kq.

Совершенно естественным является предположение, что потоки будут арифметически складываться, а значит полный поток через любую замкнутую поверхность, охватывающую все заряды, пропорционален суммарному заряду тел, находящихся внутри этой поверхности.

Это утверждение является основным законом, командующим над электрическими полями (одним из четырех уравнений Максвелла, см. гл. 5).

Прошу заметить, что мы не вывели, не доказали эту формулу. Мы догадались, что дело должно обстоять так, а не иначе. Это и значит, что мы имеем дело с общим законом природы, справедливость которого устанавливается опытным подтверждением любых следствий, вытекающих из общего закона.

Очень важно знать общее правило, которое справедливо для любых систем. С помощью написанного закона ЭВМ вычислит за секунды электрическое поле, создаваемое самой сложной системой заряженных тел.

Мы же удовлетворимся скромной задачей и выведем (демонстрируя на этом элементарном случае приемы теоретической физики) практически важную формулу для емкости конденсатора.

Сначала определим это распространенное понятие. Емкостью конденсатора называется отношение заряда, который. скапливается на его пластинах, к напряжению между обкладками, т. е.

С = q/U.

В случае конденсатора силовые линии не идут в стороны, они выходят из положительной пластины и входят в отрицательную. Если пренебречь искажением поля на краях конденсатора, то поток можно записать как произведение ES. Общий закон позволяет записать такое равенство:

ES = 4π∙Kq

т. е. напряженность поля между обкладками v

Е = 4π∙K∙(q/S)

С другой стороны, напряженность поля конденсатора может быть записана как

E = U/d.

Приравнивая эти два выражения, мы получаем формулу для емкости конденсатора:

C = S/(4π∙Kd)

Технические конденсаторы представляют собой металлические полосы, которые прижаты к слюде или парафинированной бумаге. Эти вещества принадлежат к изоляторам. Какую же роль играет введение диэлектрика между обкладками конденсатора? Опыт показывает, что емкость конденсатора С связана с емкостью конденсатора без прокладки С0 формулой С = ε∙С0.

Величина ε носит название диэлектрической проницаемости. Для воздуха, слюды, воды и сегнетовой соли значения ε равны соответственно 1, примерно 6, 81 и 9000.

ЧТО ВЗЯТЬ ЗА ОСНОВУ

Закон Ома и закон Джоуля-Ленца связывают между собой энергию, силу тока, напряжение и сопротивление. Можно сказать, что напряжение равно произведению силы тока на сопротивление. Можно сказать и так: силой тока называется напряжение, поделенное на сопротивление. Но оба эти определения, которые можно встретить в учебниках, страдают тем недостатком, что они удобны лишь в том случав, если справедлив закон Ома. А, как было сказано, этот закон верен не всегда. Поэтому лучше всего поступить так, как мы это сделали, а именно считать, что производной величиной является сопротивление проводника, которое определяется как отношение напряжения на концах проводника к силе тока, который через него идет.

Поскольку энергию электрического тока можно измерять, исходя из закона сохранения энергии — по тепловым и механическим действиям тока, то ясна целесообразность определения силы тока или напряжения как величины, производной от энергии. Наиболее естественно определить силу тока с помощью явления электролиза, а напряжение на концах участка цепи — как частное от деления выделенной энергии на количество электричества.

Однако читатель должен ясно представить себе, что эта система определений не является единственной. Вместо электролиза в основу определения силы тока может быть положено и любое другое его действие: скажем, действие тока на магнитную стрелку или на другой ток.

Нет в принципе ничего порочного и в таком пути: выбирается некоторый стандартный источник тока, а напряжение любого другого источника определяется числом эквивалентных стандартных элементов. Это не выдумка. Такое предложение было, а стандартный источник носит название элемента Вестона.

Еще один вариант: систему определений и единиц измерения можно строить, выбрав некоторое эталонное сопротивление, и опять-таки измерять все другие сопротивления, выяснив, сколько стандартных элементов подменяют данный проводник. В свое время в качестве такой единицы сопротивления использовался столбик ртути заданных длины и сечения.

Полезно усвоить, что очередность введения физических понятий является делом произвола. Содержание законов природы, разумеется, от этого не изменяется.

До сих пор у нас шла речь о тех электрических явлениях, которые связаны с постоянным электрическим током. Даже оставаясь внутри этой группы явлений, имеется возможность построить различные системы определений понятий и соответственно различные системы единиц измерения. На самом деле наш выбор еще шире, ибо электрические явления вовсе не сводятся к постоянному электрическому току.


Перейти на страницу:
Изменить размер шрифта: