Возможно, быстрая частица отдаст какую-то часть своего момента медленной частице, так что медленная частица, отскочив, будет двигаться быстрее. Возможно также, что медленная частица отдаст часть своего мо-мента быстрой частице и, отскочив, будет двигаться медленнее, а быстрая частица, отскочив, будет двигаться еще быстрее.

Простой случай определяет, в каком направлении произойдет перенос момента, но больше шансов на то, что момент перенесется с быстрой частицы на медленную, и быстрая частица отскочит медленнее, а медленная частица отскочит быстрее, чем до столкновения.

Почему? Да потому, что число путей, по которым момент может перейти от быстрой частицы к медленной, больше, чем число путей, по которым момент может перейти от медленной частицы к быстрой. Если все различные пути равновероятны, тогда больше шансов, что один из многих возможных переносов момента от быстрой частицы к медленной будет осуществлен скорее, чем один из немногих возможных переносов от медленной частицы к быстрой.

Чтобы лучше понять, почему это так, представьте себе пятьдесят фишек в коробке, все одинаковые, пронумерованные от 1 до 50. Возьмите одну наугад и представьте себе, что выбрали фишку 49. Это – большое число и представляет собой быстро движущуюся частицу. Положите фишку назад в коробку (которая моделирует столкновение) и выберите наугад еще одну фишку (номер которой моделирует скорость частицы). Вы могли бы выбрать опять 49 и отскочили бы с той же скоростью, с которой столкнулись. Или вы могли бы выбрать 50 и отскочить даже быстрее, чем столкнулись. Или вы могли бы выбрать любой номер от 1 до 48 – сорок восемь возможностей различного выбора, и в каждом из этих сорока восьми случаев вы бы отскочили медленнее, чем столкнулись.

Выбрав для начала номер 49, вы получили для отскакивания с более высокой скоростью лишь 1 шанс из 50. Шансов отскочить медленнее у вас оказалось 48 из 50.

Ситуация поменялась бы на обратную, если бы для начала вам достался номер 2. Он бы представлял собой очень малую скорость. Если бы вы бросили эту фишку назад и вытащили бы наугад другую, у вас был бы только 1 шанс из 50 выбрать номер 1 и отскочить медленнее, чем вы столкнулись, и в то же время у вас было бы 48 шансов из 50 выбрать любой номер от 3 до 50 и отскочить быстрее, чем вы столкнулись.

Если вы представите себе еще десять человек, каждый из которых вытаскивает фишку 49 из отдельной, предназначенной ему коробки, и бросает ее назад, чтобы снова попытать счастья, шансов, что все они вытащат 50 и что все отскочат быстрее, чем сталкивались, будет один из сотни миллионов миллиардов. С другой стороны, два шанса из трех, что каждый из Десяти в отдельности отскочит с более низкой скоростью.

И, наоборот, если бы те же самые десять человек для начала вытащили бы каждый по фишке с номером 2 и снова попытали бы счастья, ситуация поменялась бы на обратную.

Этим людям совершенно не обязательно выбирать одинаковые числа. Допустим, большое количество людей выбирают фишки, и у них оказываются совершенно разные номера, но среднее число довольно высокое. Если они вытащат еще по фишке, то гораздо более вероятно, что среднее число будет ниже, а не выше. Чем больше будет людей, тем более определенно, что среднее число будет ниже.

То же самое можно сказать и о людях, доставших фишки и обнаруживших, что у них довольно низкий средний номер. При повторной попытке они, скорее всего, вытащат номер выше среднего. Чем больше людей, тем больше вероятность, что среднее число будет выше.

В любых телах, достаточно больших, чтобы на них можно было производить опыты в лаборатории, количество атомов или молекул в каждом не десять, и не пятьдесят, и даже не миллион, а миллиарды триллионов. Если эти миллиарды триллионов частиц в горячем теле имеют высокую среднюю скорость и если миллиарды триллионов частиц в холодном теле имеют низкую скорость, тогда очень много шансов на то, что беспорядочные столкновения этой массы частиц уменьшат среднюю скорость частиц в горячем теле и увеличат среднюю скорость частиц в холодном теле.

Как только средняя скорость частиц станет одинаковой в обоих телах, тогда и момент, вероятно, передастся как в одном направлении, так и в другом. Одни частицы будут двигаться быстрее, другие – медленнее, но средняя скорость (а следовательно, и температура) станет одинаковой.

Это дает нам ответ на вопрос, почему тепло течет от горячего тела к холодному, и почему оба тела достигают одинаковой температуры и сохраняют ее значение. Это просто следствие закона вероятности, естественно вытекающее из слепых случайностей.

Вот, собственно, почему энтропия Вселенной неуклонно возрастает. Существует очень много путей, связанных с равномерным распределением энергии, намного больше тех, которые делают ее распределение более неравномерным, поэтому невероятно высоки шансы, что изменения будут идти в направлении возрастания энтропии, и путь к этому не что иное, как слепой случай.

Иными словами, второе начало термодинамики указывает не на то, что должно произойти, а только на то, что произойдет с подавляюще большой вероятностью. Здесь есть существенная разница. Если энтропия должна увеличиваться, то она никогда не уменьшится. Если энтропия лишь скорее всего увеличивается, то она скорее всего не уменьшится, но в конечном счете, если мы подождем достаточно долго, даже почти невероятное может произойти. Фактически, если мы подождем достаточно долго, оно должно произойти.

Представим себе Вселенную в состоянии тепловой смерти. Мы можем вообразить ее огромным, возможно, беспредельным трехмерным морем частиц, вовлеченных в бесконечную игру столкновений и отскакиваний отдельных частиц, одни из которых движутся быстрее, другие – медленнее, но с остающейся неизменной средней скоростью.

Время от времени в небольшой области соседствующих частиц развивается довольно высокая внутренняя скорость, в то же время в другой области на некотором расстоянии от первой устанавливается довольно низкая скорость. Общая средняя скорость во Вселенной не меняется, но у нас появилась область с низкой энтропией, и становится возможным некоторое небольшое количество работы, до тех пор пока эти области не уравняются, что произойдет через некоторое время.

То и дело на какое-то продолжительное время образуется большая неравномерность, произведенная этими случайными столкновениями, и опять, за еще более продолжительное время, еще большая неравномерность. Мы можем себе представить, что иногда, за триллион триллионов лет, образуется такая неравномерность с очень низкой энтропией в области размером со Вселенную. Для области размером со Вселенную с очень низкой энтропией, чтобы снова выравняться, требуется очень длительное время – триллион лет или более.

Возможно, подобное произошло с нами. В бесконечном море тепловой смерти благодаря действию слепого случая вдруг возникла Вселенная с низкой энтропией, а в процессе возрастания энтропии и выравнивания она обособилась в Галактики, звезды, планеты, породила жизнь и интеллект. И вот мы теперь интересуемся всем этим.

Таким образом и за окончательной катастрофой – тепловой смертью – может последовать возрождение, как и при сильнейших катастрофах, описанных в Откровении и скандинавских мифах.

Так как первое начало термодинамики представляется абсолютным, а второе начало термодинамики представляется только статистическим, есть вероятность существования бесконечного ряда вселенных, отделенных друг от друга воображаемыми эрами времени, только не найдется никого и ничего для измерения времени, и никаких способов в отсутствие возрастающей энтропии для его измерения, если бы даже и существовали необходимые приборы и пытливые умы. Следовательно, можно сказать: есть вероятность существования бесконечного ряда вселенных, отделенных друг от друга бесконечными интервалами.

А как на это проецируется человеческая история?

Предположим, что люди каким-то образом переживут все другие возможные катастрофы и что род человеческий проживет еще триллионы лет, прежде чем Вселенную постигнет тепловая смерть. Скорость возрастания энтропии по мере приближения к тепловой смерти неуклонно будет падать, но области со сравнительно низкой энтропией (области, малые по сравнению со Вселенной, но по человеческим масштабам очень большие) оставались бы то тут, то там.


Перейти на страницу:
Изменить размер шрифта: