(a , b ) = |a ||b |cosj.
Величина |b |cosj называется проекцией вектора b на ось, определяемую вектором а , и обозначается прa b . Поэтому (a, b ) = |a |прa b . В частности, если a — единичный вектор (|a | = 1 ), то (а, b ) = прa b . Очевидны следующие свойства скалярного произведения:
(а , b ) = (b , а ), (lа , b ) = l (а , b ),
(а + b , с ) = (а , с ) + (b , с ), (a , а ) ³ 0,
причём равенство нулю имеет место лишь при a = . Если в ортонормированном базисе i, j, k векторы а и b имеют соответственно координаты íX1 , Y1 , Z1 ý и íХ2 , Y2 , Z2 ý, то (a , b ) = X1 X2 + Y1 Y2 + Z1 Z2,
Для определения векторного произведения векторов нужно понятие левой и правой упорядоченной тройки векторов. Упорядоченная тройка векторов а, b, с (а — первый вектор, b — второй, с — третий), приведённых к общему началу и не лежащих в одной плоскости, называется правой (левой), если они располагаются так, как могут быть расположены соответственно большой, несогнутый указательный и средний пальцы правой (левой) руки. На рис. 6 изображены справа — правая, а слева — левая тройки векторов.
Векторным произведением векторов a и b называют вектор, обозначаемый [a, b ] и удовлетворяющий следующим требованиям: 1) длина вектора [a, b ] равна произведению длин векторов a и b на синус угла j между ними (таким образом, если a и b коллинеарны, то [a, b ] = ); 2) если a и b неколлинеарны, то [a, b ] перпендикулярен каждому из векторов a и b и направлен так, что тройка векторов a , b, [a, b ] является правой. Векторное произведение обладает следующими свойствами:
[a , b ] = — [b , а ], [(la ), b ] = l [a , b ],
[с , (a + b )] = [с , a ] + [с , b ], [a , [b , с ]] = b (a , с ) — с (a , b ),
([a , b ], [с , d ]) = (a , c )(b , d ) — (a , d )(b , c ).
Если в ортонормированном базисе i, j, k , образующем правую тройку, векторы a и b имеют соответственно координаты íX1 , Y1 , Z1 ý и íX2 , Y2 , Z2 ý, то [a, b ] = íY1 Z2 — Y2 Z1 , Z1 X2 — Z2 X1 , X1 Y2 — X2 Y1 ý. Понятие векторного произведения связано с различными вопросами механики и физики. Например, скорость v точки М тела, вращающегося с угловой скоростью со вокруг оси l, равна [w, r ], где
Смешанным произведением векторов a, b и c называется скалярное произведение вектора [a, b ] на вектор с : ([a, b ], с ). Обозначается смешанное произведение символом abc . Смешанное произведение не параллельных одной плоскости векторов a , b и с численно равно объёму параллелепипеда, построенного на приведённых к общему началу векторах a , b и с , взятому со знаком плюс, если тройка a , b и с правая, и со знаком минус, если тройка левая. Если же векторы a , b и с параллельны одной плоскости, то abc = 0 . Справедливо также следующее свойство abc = bca = cab . Если координаты векторов a , b и с в ортонормированном базисе i, j, k , образующем правую тройку, соответственно равны íX1 , Y1 , Z1 ý, íX2 , Y2 , Z2 ý и íХ3 , Y3 , Z3 ý, то

Вектор-функции скалярных аргументов. В механике, физике, дифференциальной геометрии широко используется понятие вектор-функции одного или нескольких скалярных аргументов. Если каждому значению переменной t из некоторого множества ít ý ставится в соответствие по известному закону определённый вектор r , то говорят, что на множестве ít ý задана вектор-функция (векторная функция) r = r (t ). Так как вектор r определяется координатами íx, y, z ý, то задание вектор-функции r = r (t ) эквивалентно заданию трёх скалярных функций: х = x (t ), y = y (t ), z = z (t ). Понятие вектор-функции становится особенно наглядным, если обратиться к так называемому годографу этой функции, то есть к геометрическому месту концов всех векторов r (t ), приложенных к началу координат О (рис. 7 ). Если при этом рассматривать аргумент t как время, то вектор-функция r (t ) представляет собой закон движения точки М, движущейся по кривой L — годографу функции r (t ).
Для изучения вектор-функций важную роль играет понятие производной. Это понятие вводится следующим образом: аргументу t придаётся приращение Dt ¹ 0 и вектор Dr = r (t + Dt ) — r (t ) (на рис. 7 это вектор