3-1. Материал А сам образует «слоёнку» с материалом Б.

*3-2. См. рис. 40.

Теперь видно, что процесс образования «слоёнки» состоит из двух действий. Надо, чтобы лежащие порознь материалы А и Б образовали один общий объем. А затем они должны определенным образом расположиться в этом объеме. Значит, можно уточнить ИКР.

Вот как уточнялся ИКР при решении этой задачи в Азербайджанском общественном институте изобретательского творчества (объектом был взят материал Б).

Слушатель: Материал Б сам влезает в А и упорядочение располагается в нем.

Преподаватель: Здесь два действия: «влезает» и «упорядочение располагается» - значит, и две задачи.

Слушатель: Первая легко решается. Чтобы материал Б «влез» в материал А, надо бросить Б в расплавленное А.

Преподаватель: Следовательно, мы можем заново сформулировать ИКР.

Слушатель: Б раздробилось, и частички сами расположились по плоскостям.

Преподаватель: Но здесь снова две задачи - «раздробить» и «расположить по плоскостям».

Алгоритм изобретения pic_45.jpg

Рис. 41. Окончательный вариант шага 3-2 к задаче 13.

Слушатель; Раздробить легко. Можно заранее насыпать Б в виде порошка. Окончательная формулировка ИКР: порошок Б сам упорядоченно расположился в расплаве А (рис. 41)… Но если Б - магнитный материал, можно использовать магнитные силы. Они расположат частицы в определенном порядке. Потом расплав застывает- и задача решена.

Преподаватель: А если вещество Б из немагнитного материала?

Подсказки с мест: Использовать оптические силы… акустические… электрические…

Слушатель: Значит, есть следующие силы: электрические, магнитные, оптические, механические, акустические, ядерные…

Подсказка с места: Акустические! Создать в сосуде стоячие волны. Частицы Б соберутся в плоскостях, соответствующих узлам. В пучностях будет только вещество А. *

Это соответствует контрольному ответу: «Способ изготовления материалов слоистой структуры с заданным расположением слоев, отличающийся тем, что с целью получения тонкой периодической пространственной структуры взвесь частиц тугоплавкого вещества в расплаве легкоплавкого подвергается воздействию стоячего ультразвукового поля соответствующей частоты с последующим устранением поля и быстрым охлаждением расплава» (авторское свидетельство № 108894).

Ход решения этой задачи интересен тем, что отчетливо показывает механизм анализа. В задаче с большим поисковым полем постепенно уменьшается степень неопределенности, и поисковое поле становится меньше и меньше. В конце концов, все сводится к вопросу: какими силами можно управлять немагнитным порошком, нахо-

Алгоритм изобретения pic_46.jpg

дящимся в жидкой среде? Сложная изобретательская задача превратилась в простую, решающуюся перебором нескольких вариантов.

В контрольном ответе сочетаются уже известные нам приемы (принцип дробления, принцип динамичности) и физический эффект, основанный на применении стоячих волн. Это типичная ситуация: упрощенная задача, полученная в результате анализа часто решается применением того или иного физического эффекта.

* * *

Есть изобретательские задачи, решенные только за счет использования физических эффектов и явлений. Вот, например, патент ГДР 51194: для изменения диаметра дробинок используется влияние электрического поля на поверхностное натяжение жидкого металла; меняя интенсивность поля, управляют поверхностным натяжением, следовательно, и размером капелек, из которых получаются дробинки.

Иногда изобретение непосредственно вытекает из нового открытия. Таковы многочисленные изобретения, основанные на электрогидравлическом эффекте.

Иногда в изобретении использовано открытие, сделанное в незапамятные времена. Например, авторское свидетельство № 306036: «Рейсфедер, содержащий ручку с двумя створками и винтовую пару для разведения створок, отличающийся тем, что с целью повышения точности регулирования раствора створок он снабжен редуцирующим элементом, выполненным в виде двуплеч-ного рычага, одно плечо которого связано с винтовой парой, а другое контактирует со створкой рейсфедера». Изобретатель, как видим, применил рычаг - открытие, совершенное тысячелетия назад. Впрочем, здесь еще усматривается (хотя и где-то в глубине веков) исходное открытие. Бывает и так, что исходное открытие не имеет ни срока, ни автора, ни четкой формулировки. Взять хотя бы авторское свидетельство № 184219. «Способ непрерывного разрушения горных пород зарядами ВВ, отличающийся тем, что с целью получения мелких фракций, непрерывное разрушение поверхностного слоя производят микрозарядами…» Тут в первооснове сделанное неизвестно кем и неизвестно когда открытие, которое можно сформулировать примерно так: маленький молоток отбивает маленькие частицы, большой - большие…

Иногда говорят, что все изобретения (или все значительные изобретения) «происходят» от открытий. Если понимать термин «открытие» так, как он трактуется в изобретательском праве, можно сразу привести множество изобретений, не связанных с открытиями и в то же время бесспорно значительных и оригинальных. Например, патент США № 3440990: корабль состоит из отдельных взаимозаменяемых блоков - «ходовые» блоки не простаивают в ожидании разгрузки-погрузки «грузовых» блоков. Или авторское свидетельство № 305974: производительность стана, изготовляющего многослойные спи-ральношовные трубы, лимитировалась производительностью сварки; предложено лишь слегка - в нескольких точках - прихватывать шов сваркой, а затем снимать трубу со стана и производить плотную сварку вне стана, не задерживая изготовление следующей трубы. Тут не использованы физические эффекты и явления, хотя изобретательский подход к решению задачи виден вполне отчетливо.

Существует и противоположная тенденция сузить группу изобретений, основанных на физических эффектах: к этой группе относят только такие изобретения, которые непосредственно вытекают из недавно открытых (или старых, но необычных, малоизвестных) эффектов.

Оба уклона ошибочны. «Физические изобретения» представляют собой значительную, но не единственную группу. Сегодня еще нет возможности точно определить термин «физические изобретения» (правильнее: изобретения, непосредственно основанные на физических эффектах и явлениях), но это не отменяет необходимости изучать такие изобретения.

Физические эффекты и явления - костяк той самой физики, которую современный изобретатель годами изучает в школе и в институте. К сожалению, изобретательскому применению физики там не учат. Поэтому физические явления, законы, эффекты хотя и лежат в памяти инженера, но плохо стыкуются с информацией об изобретательских задачах. Изобретатель держит в руках связку ключей, но не умеет (не обучен) открывать этими ключами хитрые - с секретом! - замки изобретений: иногда наугад перебирает ключи, иногда, правильно выбрав ключ, не так его вставляет - и за все это расплачивается потерями времени.

Изобретателям надо присматриваться к давно знакомым эффектам и явлениям, приучаясь видеть в них рабочие инструменты для творческого решения изобретательских задач. Знания в этой области надо постоянно пополнять, потому что число открытых эффектов и явлений быстро растет, да и старые малоизвестные эффекты все чаще и чаще переходят в разряд действующих.

Хорошо бы иметь таблицу, показывающую - в зависимости от особенностей задачи - эффекты и явления, которые можно использовать в данном конкретном случае. Работа в этом направлении ведется Общественной лабораторией методики изобретательства при ЦС ВОИР.

Р еш ен ие задачи 14

2-3. Дана система из трубопровода, насосов, жидкостей А и Б, движущихся по этой трубе, и разделителя, находящегося между А и Б. Разделитель не проходит через насосы, часто застревает в трубопроводе.

2-4. а) Разделитель.

б) Трубопровод, насосы, жидкости А и Б. (Трубопровод и насосные станции уже построены, менять их трудно.)


Перейти на страницу:
Изменить размер шрифта: