Какие еще составы нужны? Любой состав можно и на пальцах получить, не наводя научного туману.

О том, что хорошо показано и ОЧЕВИДНО, не надо рассказывать, глупо выйдет: у взрослого велосипеда два колеса, а у детского три; у чашки есть ручка, а у стакана нет и т.п. "Вы только подумайте, ребята... Еще за 15 минут до смерти он был жив. Даже за 10... И даже за 5!"

Состав десятка выучивается сам собой, поскольку он у нас исчерпывающе представлен, хорошо показан, и рассказывать об очевидностях излишне. Чем больше работаем с лентой, решая задачу за задачей, тем быстрее эта очевидность усваивается.

Не смущает нас и так называемый переход через десяток. Многих методистов раздражает красная полоса, проведенная после 9 и чисел, оканчивающихся на 9. "Вы бы, -советуют, начали не с нуля, а с единицы, тогда бы 100 на ленте разместилось, а то у вас кончается на 99. И красную полосу ставили бы после 10, 20, 30..."

В том то и ошибка, что почти все раньше так и делали. Обратимся к комплекту картонок, расположенных не лентой, а "столбом" в порядке (сверху вниз) О...9, 10...19, 20.-.29 и т.д. с 90...99 в самом низу.

Посчитаем сверху вниз, сколько рядов изображений десятков (в кружочках либо в квадратиках) получилось на весь столб:

1+1+2+3+4+5+6+7+8+9=46. Послушайся учёных и устрой картонки как им хочется, т.е. 1...10, 11...20, 21...30, 31...40, 41...50, 51...60, 61...70, 71...80, 81...90, 91...100, рядов десятков получилось бы 1+2+3+4+5+6+7+8+9+10=55.

Приобретение лишних девяти рядов не только бы увеличило объем таблицы, но и значительно затруднило бы пользование ею. Каждый горизонтальный ряд двузначных чисел объединяется у нас общей начальной цифрой: 50-51-52-53-54-55-56-57-58-59, а также общим начальным словом, в данном случае "пятьдесят".

Эти ориентиры помогают ребёнку отыскивать число и на ленте и в картонках, расположенных "столбом". Потеря этих ориентиров осложнит процесс поиска.

Есть ещё одно соображение в пользу того представления числового ряда, который мы предлагаем. Допустим, студентке В. исполнилось 20 лет. Какой ей десяток пошёл? - Правильно, третий. И в наших картонках это третий десяток. А члену-корреспонденту, МРЗ (методисту республиканского значения) Г. исполнилось 60. Ему какой десяток пошёл? - Правильно, седьмой. По нашим картонкам тоже так выходит. Последуй мы в своё время советам московских специалистов, девушка бы думала, что ей идёт второй десяток, а заслуженный МРЗ пребывал бы в шестом.

Не следует ли из вышесказанного, что никакого "перехода через десяток" не существует (Сколько лет не тем маялись?), есть ПЕРЕХОД к новому десятку. Но и об этом детям не сообщайте, чтобы не омрачать радости, с какой они решают задачи на сложение и вычитание, безмятежно перепрыгивая через красную полосу.

Не рассказывайте про однозначные и двузначные числа, о том, как при сложении два однозначных ("Надо же чудо какое! Кто бы мог подумать, что такое бывает?") превращаются в двузначное и пр. и пр. Не забивайте голову ни им, ни себе. Всё это ребёнок прекрасно отследит в действиях на ленте. Это и есть его путь от конкретного к абстрактному, от общего к частному и обратно.

Если кто-то еще не уверен, что ребята уже разобрались, где меньше, а где больше, что чего на сколько больше и на сколько меньше, проделайте следующее упражнение, пятилетки с ним легко справляются.

11) Раздайте пяти-шести-десяти ребятам по карточке (из разрезанного комплекта), к примеру, 5,14,19, 21, 36, 48, 54, 66, 87.

Получив карточку, каждый должен найти такую же клеточку на числовой ленте и установить в ней свою указку. Указки Делайте метра по полтора-два, чтобы не снизу в высоко расположенную на стене ленту заглядывать, а с приличного расстояния - для глаз так лучше, голова поднята, вверх тянешься, спинка прямая. И, что очень важно, угол обзора шире, а значит, и "угол мышления".

Диалог наставника (Н) с детьми может проходить примерно следующим образом:

Н: У кого меньше всех

Саша: У меня.

Н: А сколько у тебя?

Саша: Пять.

Н: А у кого больше всех?

Юля (очень довольная): У меня! 87.

Наставник обходит детей, которые показывают свои карточки и те же, что на карточках, числа на ленте и называют их.

Н: Саша, на, сколько у Игоря больше, чем у тебя?

Саша (пересчитав клетки до той, в которой держит указку Игорь): На девять!

Н: Игорь, на сколько больше у Наташи?

Игорь: На пять!

Наташа: У Светы на два больше, чем у меня!

Света: У Лены на 15 больше.

Лена: У Ларисы на 12 больше, чем у меня.

Лариса: У Вани на 6 больше. . ,

Ваня: У Серёжи на 12 больше, чем у меня.

Сережа: У Юли на 11 больше, чем у меня.

Н: Юля, посчитай, на сколько у Сережи меньше, чем у тебя.

Юля: У Серёжи на 11 меньше, чем у меня.

И так далее влево до Саши. Через некоторое время ребята смогут свободнее ориентироваться, совсем не трудно будет сказать:

Лариса: У Вани на 6 больше, чем у меня, а у Лены на 12 меньше.

Конечно, ребятам будет интереснее высказываться в таком духе: "У Игоря на 7 бананов больше, а у Васи на 13 меньше, чем у меня". Вместо бананов, понятно, могут быть мячи, машины, яблоки, конфеты, тысячи рублей, селёдки, сардельки, лягушки, скорпионы, грязные тарелки и т.п.

12) С проблемой "сколько в каком числе знаков", лучше всего разобраться но таблице.

В двадцать пятом садике Выборгского района Петербурга в детском коллективе событие. Воспитательница Галина Дмитриевна принесла в группу такую таблицу размером в ватмановский лист. Целый день ребята ничего не могли делать - всё возвращались к записанным в ней числам. Стали выкладывать все названия на кубиках. По дороге домой рассказывали родителям: "Мама, ты знаешь что такое квадриллион? Шестнадцатизначное число - единица с пятнадцатью нулями. А сто дециллиопов - тридцать пять нулей! С единицей тридцать шесть знаков. А дальше уже названий нет. Числа есть, а названий нет. Пишут какоенибудь число, а наверху - сколько после него нулей".

Всё это ребята узнали благодаря таблице и пояснениям Галины Дмитриевны.

Аидециллион 1036, дуодециллион 1039, тредециллион 1042, кваттордециллион 1045, сексдециллион 1051, септендециллион 1054, октодсциллиоп 1057, новемдециллион 1060 , вигинтиллион 1063 , гугол 10100 почти ни в каких словарях и справочниках не сыщешь, поэтому и ребятам о них можно не сообщать.

13) Еще несколько видов работы с карточками. Раздадим группе, скажем, из 18 ребят, все 200 карточек. Шестнадцати ребятам достанется по 11 карточек с кружочками и квадратиками, двоим по 12. Каждому нужно отделить карточки с кружочками от карточек с квадратиками и разложить их в две строчки от маленьких к большим.

Теперь, по вызову наставника, нужно в свою очередь бегать то в одно, то в другое место, составляя сразу две ленты или два столба. НОЛЬ, ИДИ СЮДА! - Двое ребят с карточками "ноль" бегут в места, с которых начнутся ленты.

- ОДИН, ИДИ СЮДА! - Ещё двое побежали класть свои карточки справа от уже положенных их товарищами.

И так далее. Участвуют все, сильные помогут слабым, никому не дадут зазеваться.

14) Выкладываем ряды и СЧИТАЕМ ДВОЙКАМИ, ТРОЙКАМИ, четверками, пятерками и т.д.: 17, 34, 51, 68, 85. Глядя на последний ряд, четырех-пятилетки запросто отвечают на вопросы:

- Сколько стоят три рубашки по 17 тысяч?

- 51 тысячу.

- А две рубашки?

- 34 тысячи.

- А пять рубашек?

- 85 тысяч.

К чему приучаем детей, выкладывая такие ряды? - Правильно, к умножению и делению.

15) Раздадим детям по карточке. Объявим, что БУДЕМ ЗАНИМАТЬСЯ СЛОЖЕНИЕМ. У одного ребенка, к примеру, на карточке 14, а у другого 37. Чтобы сложить эти числа, нужно сосчитать на карточках изображения десятков ( "десять-двадцать-тридцать-сорок" ), добавить к семи три, закрыв три кружочка или квадратика под цифрой 4, и сказать "пятьдесят", добавить к пятидесяти один (не закрытый кружок или квадратик под четверкой) и сказать "пятьдесят один". Теперь можно бежать к наставнику, объявить результат, и, если результат верен, получить еще но карточке, оставив себе прежние 14 и 37. Играем до тех нор, пока у наставника не кончатся карточки, после чего подсчитываем, у кого (или у какой команды) сколько карточек.


Перейти на страницу:
Изменить размер шрифта: