Возможен ли вечный двигатель? i_021.jpg

Рис. 19. Сифонно-капиллярный вечный двигатель (XVIII век).

Изобретатель предполагал, что вода из верхнего сосуда, перелившись по сифону в нижний, будет возвращаться в верхний по другим трубкам очень малого диаметра, так называемым капиллярным трубкам. Однако ожидаемого передвижения воды по ним не происходило. Почему так получалось, мы разберём, ознакомившись ещё с одним жидкостным, также оказавшимся бездействующим, вечным двигателем (рис. 20).

Возможен ли вечный двигатель? i_022.jpg

Рис. 20. Капиллярно-фитильный вечный двигатель (XIX век).

По предположению изобретателя вода или масло из нижнего сосуда будет подниматься вверх по обыкновенному фитилю и стекать в верхний сосуд. Отсюда жидкость, попав на колесо, приведёт его в движение. А затем из нижнего сосуда она беспрерывно поднимается по фитилю вверх. Однако двигатель не работал.

Какие же физические явления пытались использовать изобретатели, создавая последние два вечных двигателя?

Всем нам достаточно хорошо известна керосиновая лампа. В ней керосин действительно, вопреки силе тяжести, поднимается из резервуара на 10–15 см вверх по фитилю. Почему же не работали только что описанные вечные двигатели?

Чтобы понять причины этого, возьмём сосуд с водой и на её поверхность осторожно уложим стальную иглу или проволочную спираль, смазанные жиром. Оказывается, что игла и спираль не потонут. Они будут плавать на поверхности. Внимательно всмотревшись, мы обнаружим, что поверхность воды под иглой или спиралью изогнулась словно резина под тяжёлым грузом. Следовательно, в поверхностном слое жидкости действуют какие-то силы, поддерживающие свободную поверхность в напряженном состоянии, подобно растянутой тонкой плёнке из резины. Что это именно так, можно убедиться, проделав следующий опыт. Возьмём проволочное кольцо, затянутое мыльной плёнкой, и положим на неё петлю из нити. Петля останется лежать в том случайном положении, в каком оказалась в момент укладывания (рис. 21, слева). Разрушим внутри нитяной петли плёнку, прикоснувшись к ней разогретой иглой. Петля немедленно растягивается в круг (рис. 21, справа).

Возможен ли вечный двигатель? i_023.jpg

Рис. 21. Пример действия сил поверхностного натяжения.

Произошло это под действием натяжения плёнки, сохранившейся вокруг петли. Нечто подобное происходит и с кисточкой для рисования, когда её вынимают из воды: все её волоски как бы слипаются вместе.

Учёные установили, что силы, удерживающие стальную иглу и спираль на поверхности жидкости, растягивающие петлю в кольцо и стягивающие волоски кисточки, всегда направлены перпендикулярно к контуру, на который они действуют. Называют эти силы силами поверхностного натяжения.

Почему же возникает поверхностное натяжение?

Рассмотрим внимательно рисунок 22, на котором условно изображены отдельно две молекулы жидкости: одна внутри жидкости, а другая — у её поверхности.

Возможен ли вечный двигатель? i_024.jpg

Рис. 22. Схема действия межмолекулярных сил на молекулу внутри жидкости и у поверхности.

На каждую из них действуют по-разному силы притяжения соседних молекул. Молекулу, находящуюся под поверхностью жидкости, окружают со всех сторон другие молекулы. Межмолекулярные силы притягивают эту молекулу со всех сторон одинаково, в результате чего она находится в равновесии. По-иному действуют межмолекулярные силы на молекулу, находящуюся на поверхности жидкости. Верхняя половина этой молекулы испытывает ничтожное притяжение со стороны молекул газов воздуха; практически оно отсутствует совсем. Такая молекула оказывается лишь под действием нижележащих молекул жидкости, стремящихся втянуть её внутрь, а также соседних молекул, лежащих в одном с нею слое и увлекающих её в разные стороны в горизонтальной плоскости. Поверхность жидкости в сосуде вследствие этого подобна коже, натянутой на корпус барабана, — непосредственно на поверхности жидкости образуется упругая плёнка.

Подсчитано, что поверхностное натяжение в этой плёнке толщиной несколько больше одной молекулы давит на нижележащий слой жидкости с огромной силой. Под влиянием поверхностного натяжения плёнки внутреннее молекулярное давление достигает, например, для воды 10 000 атмосфер, для эфира 1400 атмосфер, для спирта 2400 атмосфер.

От поверхностного натяжения, оказывается, зависит и «поведение» жидкости в различных сосудах. Поверхностное натяжение ртути и керосина, например, резко различается между собою. Это можно заметить, рассматривая положение (форму) свободной поверхности их в сосудах (рис. 23).

Возможен ли вечный двигатель? i_025.jpg

Рис. 23. Явление капиллярности.

Поверхность ртути слегка выпуклая, её края у стенок сосуда опущены ниже всей поверхности. Поверхность керосина, наоборот, вогнутая, её края у стенки сосуда приподняты выше всей поверхности.

Положение поверхности жидкости по отношению к стенкам сосуда называется мениском (от греческого слова — менискос, что означает лунный серп, луночка).

В широких сосудах мениск наблюдается только у самых стенок, вся остальная часть поверхности — плоская. Нередко мениск бывает трудно заметить. В трубках же с очень малым диаметром, так называемых капиллярах, мениск захватывает всю поверхность жидкости, его легко заметить.

В капилляре, опущенном в сосуд с керосином, например, мениск окажется вогнутым, а в сосуд с ртутью, наоборот, выпуклым. Кроме того, уровень керосина или любой другой жидкости с вогнутым мениском в капилляре окажется значительно выше её уровня в сосуде, а уровень ртути или какой-либо другой жидкости с выпуклым мениском, наоборот, ниже, чем в сосуде (рис. 23). В стеклянной трубке диаметром 1 мм при 20 °C и 760 мм ртутного столба вода, например, поднимется на 30, спирт на 12, а эфир на 10 мм выше общего уровня в сосуде, куда опущен капилляр.

Выпуклый мениск образуется у жидкостей, не смачивающих стенки сосуда, а вогнутый — у смачивающих. Смачиваемость или несмачиваемость стенок сосуда зависит от свойств жидкости и материала, из которого изготовлены стенки сосуда. Между молекулами жидкости и стенок сосуда возникают силы притяжения или отталкивания. Если силы притяжения со стороны молекул стенки больше межмолекулярных сил жидкости, то те молекулы её, которые соприкасаются со стенками сосуда, поднимаются по стенке сосуда выше всей поверхности. Происходит смачивание стенок сосуда жидкостью, в этом случае образуется вогнутый мениск. Если же межмолекулярные силы жидкости больше сил притяжения молекул стенки или если молекулы стенки сосуда и жидкости отталкиваются друг от друга — образуется выпуклый мениск. В этом случае жидкость не смачивает стенок сосуда.

В капилляре с вогнутым мениском давление поверхностной плёнки на нижележащую жидкость меньше, чем в широком сосуде. Поэтому уровень жидкости в капилляре поднимается выше общего уровня её в большом сосуде (рис. 23, справа). При выпуклом мениске давление поверхностной плёнки в капилляре на нижележащую жидкость больше, чем в широком сосуде. Поэтому уровень жидкости в капилляре окажется ниже общего уровня её в большом сосуде (рис. 23, слева). Теперь нам понятна ошибка изобретателей сифонно-капиллярного и фитильного вечных двигателей. У сифонно-капиллярного вечного двигателя (рис. 19) жидкость поднимется по капилляру лишь до верхнего сосуда при условии, что сосуд пустой. Здесь в месте расширения капилляра давление поверхностной плёнки на жидкость станет таким же, как и в обычном сосуде. Движение жидкости вверх прекратится. И система, созданная воображением изобретателя, действовать не будет. Если же в верхнем сосуде будет хотя бы небольшой запас жидкости, то капиллярная трубочка окажется просто дополнительным каналом, по которому жидкость будет перетекать из верхнего сосуда в нижний.


Перейти на страницу:
Изменить размер шрифта: