Фотопортреты планет

img_4.jpeg

Одним из ведущих методов изучения планет земной группы и Луны является интерпретация снимков поверхности — своего рода фотопортретов, на которых четко видны все особенности рельефа и структуры, доступные для геологического дешифрирования. В геологических исследованиях аэрофотоснимки давно уже находят самое широкое применение. Одним из инициаторов развития этого направления исследований был академик А. Е. Ферсман. В послевоенные годы в связи с потребностями страны в быстрейшем выявлении минеральных ресурсов были созданы специализированные аэрогеологические экспедиции. Уже в те годы над заснеженными хребтами Алтая и бескрайней тайгой Эвенкии можно было увидеть самолеты с надписью "Аэрогеология" на фюзеляже.

Космические снимки земной поверхности сразу же привлекли внимание геологов. На них удалось увидеть целиком крупные регионы, складчатые пояса, зоны разломов — гигантских трещин в земной коре, своеобразные кольцевые структуры поперечником в десятки и сотни километров. Аэрофотоснимки и космические снимки стали такими же неизменными спутниками геолога, как геологический молоток и горный компас. В зависимости от задач в геологических исследованиях применяются снимки всего масштабного ряда, когда съемка ведется с искусственных спутников Земли, пилотируемых космических кораблей и орбитальных станций, самолетов на разных высотах. Поэтому иногда говорят об "этажерке" — наборе снимков разной детальности, или разных уровней генерализации.

Снимки глобального уровня были получены с автоматических межпланетных станций серии "Зонд" и пилотируемых кораблей "Аполлон", уходивших в сторону Луны. На этих снимках целиком виден весь земной шар. Однако большая часть его поверхности всегда закрыта облачным покровом. Чаще из-под облаков выступают Северная Африка, Средиземноморье, Аравия, районы Ближнего Востока и Средней Азии. На таких снимках четко прослеживаются структуры Альпийско-Гималайского складчатого пояса, выделяются протяженные линеаменты, в которые группируются мелкие разрывы и зоны трещин в земной коре.

img_5.jpeg

Вид Земли с высоты 7000 км (АМС 'Зонд-7')

Снимки континентального уровня охватывают значительные части континентов. Их получают с автоматических искусственных спутников, предназначенных в первую очередь для метеорологических целей, главным образом для изучения облачного покрова. В СССР это спутники системы "Метеор". Несмотря на свое назначение, эти снимки оказались интересными и для геологов. При малом разрешении — всего 1-2 км на местности — на обширных пространствах при отсутствии облаков на снимках отчетливо дешифрируются крупные черты геологической структуры, в том числе гигантские разломы, складчатые зоны и кольцевые структуры. Эти снимки — ценный материал для тектонического районирования. Благодаря эффекту генерализации, на них как бы проступают глубинные структуры земной коры. Это явление даже было названо "просвечиванием", или "рентгеноскопичностью" мелкомасштабных космических снимков, хотя эти понятия и не соответствуют каким-либо физическим явлениям.

Следующий уровень обычно называют региональным. Разные исследователи предлагают несколько отличные границы по пространственному разрешению для снимков этого уровня генерализации. Наиболее часто в состав таких снимков включают изображения земной поверхности, на которых на местности видны детали размером 50-250 м. Большое число таких снимков получено с пилотируемых космических кораблей и орбитальных научных станций. Например, со станции "Салют-4" съемка выполнялась стационарными камерами КАТЭ-140 и ФМС-80. Она проводилась в ориентированном режиме, т. е. тогда, когда оптические оси аппаратов были направлены строго перпендикулярно к земной поверхности. Камера КАТЭ-140 широкоформатная, с очень высокими оптическими характеристиками. Благодаря высокому качеству негативов возможно получение фотоснимков с многократным увеличением.

Камера ФМС-80 представляет собой блок из четырех фотоаппаратов, работавших одновременно. Благодаря набору пленок и светофильтров каждый аппарат мог получать изображение в определенной зоне спектра. Таким способом весь фотографический диапазон был, как бы разрезан на три части. Фотоснимки с минимальными длинами волн (500-600 нм) оказались наиболее интересными для изучения мелководий шельфа, так как на них проступает рельеф дна на небольших глубинах, видны так называемые подводные ландшафты. Снимки средней зоны (600-700 нм) явились основным материалом для расшифровки геологического строения во многих горных районах. В ряде местностей особенно эффективным оказалось использование снимков с длинами волн 700-850 нм, которые захватывают ближний инфракрасный диапазон, невидимый человеческому глазу. На них резко выделяются местности с повышенной увлажненностью, видна вся система даже самых незначительных водотоков. Такие снимки — ценный материал для гидрогеологов, мелиораторов, специалистов в области инженерной геологии. Они оказывают большую помощь при расшифровке глубинного строения равнинных территорий, где особенности строения горных пород на глубине получают отражение в ландшафте. Четвертый аппарат в этой системе был заряжен цветной диапозитивной пленкой с тем, чтобы получать изображение поверхности Земли в цветах, близких к естественным.

Большое место в работе экипажей орбитальных станций уделяется фотосъемке с помощью ручных камер. Такая съемка выполняется через иллюминаторы станции без предварительного ориентирования или в режиме гравитационной стабилизации, когда станция ориентирована своей осью в сторону Земли, сохраняя такое положение длительное время. Снимки при этом получаются преимущественно перспективные. Сами космонавты в соответствии с программой исследований выбирают сюжеты съемки и определяют наиболее благоприятные условия фотографирования. При длительной работе экипажа накапливается ценный материал по условиям космической фотосъемки геологических и других природных объектов. Особенно большая работа по съемке ручными камерами была выполнена космонавтами на станции "Салют-6". В результате съемок Ю. В. Романенко, Г. М. Гречко, В. В. Коваленка, A. С. Иванченкова, В. А. Ляхова, В. В. Рюмина, В. П. Савиных получены тысячи космических фотоснимков, запечатлевших разломы и кольцевые структуры, вулканы, прихотливо изогнутые в сложные складки пласты горных пород в Загросе и Высоком Атласе и следы отступания Каспия. Большое впечатление оставляет снимок газово-пеплового шлейфа во время извержения вулкана Горелый на Камчатке. Снимки представляют особый интерес для целей сравнительно-планетологического анализа. Чтобы убедиться в этом, достаточно положить рядом снимки вулкана Олимп на Марсе и потухшего вулкана Эми-Куси в нагорье Тибести, в центре Сахары. Эти вулканические сооружения оказались удивительно похожими.

Снимками детального уровня являются многозональные фотографии, полученные космонавтами В. Ф. Быковским и B. В. Аксеновым с пилотируемого космического корабля "Союз-22". Они были выполнены с помощью камеры МКФ-6 в процессе эксперимента "Радуга" в результате международного сотрудничества ученых СССР и ГДР в рамках программы "Интеркосмос". Съемка производилась в шести зонах спектра. На снимках, полученных при благоприятных условиях, видны детали размером порядка 15 м на местности. Эти материалы пригодны для обработки с помощью оптико-электронных средств и ЭВМ как в аналоговой, так и в цифровой формах.

Еще более детальные снимки получают с помощью самолетов. При высоте полета более 10 км аэрофотосъемка считается высотной. Ее масштаб варьирует в пределах 1:200000-1:100000. С помощью низколетящих самолетов и вертолетов можно получить снимки практически любой необходимой детальности, на которых будут видны даже одиночные деревья и крупные камни. Наряду с обычными аэрофотоснимками все более широкое применение получают радиолокационные изображения и снимки в инфракрасном тепловом диапазоне, полученные с помощью тепловизоров. Инфракрасная съемка основана на изучении тепловых контрастов и пригодна для распознавания геологических объектов. Особенно эффективно ее использование при изучении районов с активной вулканической деятельностью, при гидрогеологических и инженерно-геологических исследованиях, при поисках грунтовых и подземных вод. Радиолокационная съемка может быть осуществлена в любое время суток и при любой погоде, так как облачность, туман и освещенность не влияют на прохождение радиоволн.

В целом геологи сейчас обеспечены большим набором разномасштабных изображений земной поверхности, полученных к тому же в различных зонах спектра. Специалист в области геологического дешифрирования уверенно выделяет на них разломы, кольцевые структуры, трещины, слои горных пород, вулканы и лавовые покровы — все многообразие различных геологических объектов. Накопленный опыт используется для расшифровки снимков других планет, хотя на их фотопортретах выявляется немало загадочного, над чем ученым приходится задумываться.

Как обеспечены снимками другие небесные тела, чем отличаются их фотопортреты от земных? Начнем с Луны, так как благодаря близости к Земле она была давно уже доступна для фотографирования с помощью телескопов. Со времен Галилео Галилея многочисленные исследователи наблюдали, а в дальнейшем и фотографировали видимое с Земли полушарие Луны. Из лучших фотографий, полученных наиболее совершенными инструментами ведущих обсерваторий, собраны фотографические атласы. Для видимого полушария были составлены различные карты, вплоть до масштаба 1:1000000, а также фотокарты.


Перейти на страницу:
Изменить размер шрифта: