Для нахождения возьмем х0 = 2 и получим, согласно алгоритму,
Оценим погрешность приближения:
Так как то
а значит, приближение сразу гарантирует три верных знака после запятой (а на самом деле даже четыре знака),
3.13. Пусть число х составлено из n первых цифр ответа, а число b равно указанной в условии разности (полученной на последнем шаге алгоритма задачи 3.9). Тогда без ограничения общности можно считать, что число х целое (см. задачу 3.3) и x≥10n-1, а искомый корень равен х + 8 и δ<1. Погрешность приближения
согласно утверждениям задачи 3.12, не превосходит числа
Таким образом, приближенное значение превышает точное, но менее чем на половину единицы (n-1)-го разряда после запятой, т. е. оно, по существу, задает еще n-1 верных знаков корня
Применяя доказанный факт к полученным в решении задачи 3.10 значениям х = 223 606 и b = 356 764, находим частное дающее следующие пять верных цифр корня:
3.14. Возводя в куб обе части равенства
получаем
откуда имеем
Если х - наибольшее натуральное число, куб которого не превосходит искомого корня кубического, то справедливы неравенства
из которых получаем оценки
Наконец, для приближенная формула дает значение
с точностью до