§ 8. Расчеты при смешивании

000277.jpeg

Довольно часто приходится смешивать различные жидкости, порошки, а иногда даже газообразные или твердые вещества, разбавлять что-либо водой или наблюдать испарение воды, т. е. усыхание. В задачах настоящего параграфа вам предстоит мысленно производить именно такие операции. Ниже всюду, если не оговорено противного, будем предполагать, что в результате перемешивания получается однородная масса. Это означает, что интересующая нас характеристика смеси одинакова для любой части смеси.

Одной из наиболее распространенных характеристик смеси является концентрация конкретной составляющей смеси, т. е. отношение количества этой составляющей к общему количеству смеси. При подсчете концентрации указанные количества могут измеряться как их весом (массой), так и объемом. В приведенных ниже задачах мы везде, где возникает разночтение в этом вопросе, будем брать для определенности весовые концентрации.

На практике концентрации принято выражать в сотых долях единицы, называемых процентами. Содержание какого-либо драгоценного металла в сплаве с примесями обычно называют пробой и обозначают числом тысячных долей единицы. Например, говоря о золоте 573-й пробы, мы подразумеваем, что в каждых 1000 г такого "золота" содержится только 573 г чистого золота.

В некоторых случаях нас будет интересовать не содержание одного вещества в другом, а, скажем, стоимость единицы смеси, удельный вес или давление (к которым применимы аналогичные рассуждения). Иногда же будет поставлен принципиальный вопрос о том, какого вещества в смеси больше или как добиться наибольшего его содержания.

8.1. Приготовление раствора В каких количествах нужно смешать жидкость с ее растворителем, чтобы получить 100 г 20-процентного раствора этой жидкости?

8.2. Два раствора В каких пропорциях нужно смешать раствор 50-процентной и раствор 70-процентной кислоты, чтобы получить раствор 65-процентной кислоты?

8.3. Старинный способ Для решения задачи 8.2 нарисуем схему

000278.jpeg

в которой слева запишем требуемую концентрацию кислоты в процентах, т. е. 65, затем друг под другом запишем концентрации имеющихся растворов, т. е. 50 и 70, наконец, подсчитаем и запишем крест-накрест соответствующие разности 65 - 50 = 15 и 70 - 65 = 5. Теперь можно сделать вывод, что для получения 65-процентной кислоты нужно взять растворы 50-процентной и 70-процентной кислот в отношении 5:15, или, что то же, 1:3. Дайте обоснование приведенному способу.

8.4. Разные пробы золота В каких пропорциях нужно сплавить золото 375-й пробы с золотом 750-й пробы, чтобы получить золото 500-й пробы?

8.5. Столовый уксус Имеется 90 г 80-процентной уксусной эссенции. Какое наибольшее количество 9-процентного столового уксуса из нее можно получить?

8.6. Разбавление морской воды Сколько пресной воды нужно добавить к 4 кг морской воды, чтобы уменьшить содержание соли в ней в 2,5 раза?

8.7. Смешивание чая Индийский чай дороже грузинского в 5/4 раза. В каких пропорциях нужно смешать индийский чай с грузинским, чтобы получить чай, который дороже грузинского в 6/5 раза?

8.8. Выплавка металла Руда содержит 40% примесей, а выплавляемый из нее металл содержит 4% примесей. Сколько металла получится из 24 т руды?

8.9. Неожиданное усыхание В расколотом арбузе содержалось 99% воды. После его усыхания содержание воды стало составлять 98%. Сообразите в уме, во сколько раз усох арбуз. Не спешите с 99 ответом: арбуз усох не в 99/98 раза!

8.10. Сушка грибов В свежих грибах содержится 90% воды. Определите, во сколько раз усыхают грибы в результате сушки, если во столько же раз в них уменьшается содержание воды.

8.11. Три раствора В трех сосудах содержится по 100 г растворов кислоты: в первом 70-процентной, во втором 60-процентной, в третьем 30-процентной. Смешивая эти растворы, нужно получить 250 г раствора кислоты. Какую наибольшую и наименьшую концентрацию может иметь полученный раствор? Как получить 250 г 55-процентной кислоты?

8.12. Взвешивание в воде Сплав из золота и серебра весом 13 кг 410 г при полном погружении в воду стал весить 12 кг 510 г. Определите количество золота и серебра в сплаве, если известно, что плотность золота равна 19,3 г/см3, а серебра 10,5 г/см3.

8.13. Чего больше? В одном стакане налито некоторое количество черного кофе, а в другом - молока. Из первого стакана во второй перелили ложку кофе, а затем, не размешивая содержимое второго стакана, перелили из него в первый ложку жидкости. Чего в результате стало больше: молока в первом стакане или кофе во втором? Попробуйте решить задачу в уме.

8.14. Кофе с молоком От полного стакана черного кофе я отпил половину и долил столько же молока. Затем я отпил третью часть получившегося кофе с молоком и долил столько же молока. Затем я отпил шестую часть получившегося кофе с молоком и долил столько же молока. Только после этого я выпил все до конца. Чего в итоге я выпил больше: молока или черного кофе?

8.15. С помощью переливаний В первом стакане налито некоторое количество черного кофе, а во втором - такое же количество молока. Разрешается переливать из одного стакана в другой любое количество жидкости, тщательно размешивая содержимое стаканов. Можно ли с помощью нескольких таких переливаний добиться того, чтобы в первом стакане молока стало больше, чем кофе?

8.16. Как выгоднее полоскать? Нужно прополоскать колбу, в которой находился жидкий реактив. Для этой цели отведено некоторое количество воды. В каком случае полоскание будет эффективнее: если влить в колбу всю воду сразу или если сначала прополоскать колбу половиной имеющейся воды, а затем второй половиной?

8.17. Отливая по одному литру В кастрюле налито 10 л сиропа. Из нее отливают 1 л сиропа и доливают 1 л воды. Затем отливают 1 л смеси и снова доливают 1 л воды. Может ли сироп в результате нескольких таких операций оказаться разбавленным ровно в два раза?

8.18. Давление газа В нескольких одинаковых баллонах находится сжатый газ под разными известными давлениями, причем самое слабое давление в первом баллоне. Разрешается подсоединять первый баллон поочередно к любому из остальных баллонов, но не более чем по одному разу. При соединении двух баллонов давление в них обоих становится равным среднему арифметическому их исходных давлений. К каким баллонам и в какой последовательности следует подсоединять первый баллон, чтобы создать в нем наибольшее давление?


Перейти на страницу:
Изменить размер шрифта: