Многим из вас когда-нибудь приходилось и, скорее всего, еще не раз придется заниматься различными вычислениями. Вы, наверняка, заметили, что считать "вручную" на бумаге или тем более в уме - дело кропотливое и к тому же весьма ненадежное. Ведь любая ошибка (а при большом объеме вычислений с возможностью сделать ошибку нельзя не считаться) ведет к неверному ответу, проверка которого означает пересмотр всех сделанных выкладок. Если же в результате этого пересмотра ответ не совпадает с первоначальным, то возникает вопрос, какому из двух ответов больше доверять. Стало быть, нужно набраться терпения и пересчитать все заново, а возможно, и не один раз.
Между тем бороться с указанными неприятностями можно. Один из способов вам хорошо известен - это использование калькуляторов. К сожалению, калькулятор не всегда имеется под рукой. Поэтому полезно уметь немножко разнообразить скучное занятие, связанное с вычислениями, используя различные приемы как для упрощения выкладок, так и для их проверки. В настоящем параграфе вы найдете подборку задач, в которых как раз и разрабатываются такие приемы.
1.1. Сумма цифр Требуется сложить много однозначных чисел. Как облегчить эту работу и быстрее получить правильный ответ?
1.2. Сложение большого количества двузначных чисел Проделайте следующий эксперимент: откройте книгу на произвольной странице дальше 10-й и запишите число, составленное из двух последних цифр номера страницы. Открывая книгу много раз (скажем, ?0) и беря числа попеременно то с правой, то с левой стороны книги, вы получите большой набор двузначных чисел. Попробуйте быстро найти их сумму.
Какие приемы позволяют упростить эту работу?
1.3. Необычные записи
Рис. 1
На рис. 1 приведены любопытные способы записи операций сложения и умножения многозначных чисел. Разберитесь в этих способах.
1.4. Таблица умножения на пальцах Если вы хорошо знаете таблицу умножения чисел, меньших 5, но почему-то неуверенно себя чувствуете при умножении однозначных чисел, больших 5, то вы можете контролировать себя с помощью пальцев следующим образом. Пусть надо перемножить числа 6 и 7. Загнем на одной руке столько пальцев, на сколько первый сомножитель превышает 5 (в нашем случае 6-5 = 1 палец), а на другой руке столько пальцев, на сколько второй сомножитель превышает 5 (в нашем случае 7-5 = 2 пальца). Если сложить количества загнутых пальцев и перемножить количества незагнутых пальцев, то получится соответственно число десятков 1+2 = 3 и число единиц 4*3 = 12, а сумма 30 + 12 = 42 как раз и будет равна произведению 6*7.
Дайте обоснование предложенному способу умножения;
1.5. Умножение на 9 с помощью пальцев Этот способ настолько прост, что его может освоить любой ребенок, знакомый лишь с элементарным счетом. Пусть нужно умножить 6 на 9. Положив обе руки на стол, приподнимем шестой палец, считая слева направо. Тогда количество пальцев слева от поднятого укажет цифру десятков (в нашем случае 5), а количество пальцев справа от поднятого укажет цифру единиц (равную 4), т, е. искомое произведение будет равно 54.
Объясните, почему предложенный способ дает правильный ответ при умножении любого однозначного числа на 9.
1.6. Вычитание вместо умножения Умножение некоторого числа на 9 можно свести к вычитанию двух чисел. Подумайте, каких. Предложите аналогичный способ умножения чисел на 99, на 999, на числа, близкие к числам 10, 100, 1000 и т. д.
1.7. Быстрое деление Деление числа 63 475 на 999 было произведено следующим образом:
63 475 = 63*1000 + 475 = 63*999 + 63 + 475 = 63*999 + 538, откуда частное равно 63, а остаток 538.
Используя аналогичные преобразования, разделите число 63 475 с остатком на 99, на 98 и на 102.
1.8. Умножение и деление на 5 Трудно не согласиться с тем, что разделить произвольное число на 2 в уме легче, чем умножить его на 5. Нельзя ли воспользоваться этим обстоятельством, чтобы облегчить умножение чисел на 5? Что вы можете предложить вместо деления на 5?
1.9. Умножение и деление на степень пятерки Аналогично умножению или делению на 5 (см. задачу 1.8) можно сравнительно легко в уме умножать или делить числа на 25 и на 125. Как именно?
1.10. С помощью обыкновенных дробей Предложите способы быстрого умножения на 2,5, на 1,25, на 1,5 и на 0,75 (а также на 15 и на 75), использующие представление десятичных дробей в виде обыкновенных.
1.11. Способ удвоения При умножении чисел на степень двойки иногда используется способ, суть которого можно продемонстрировать на следующем примере:
139*32 = 278*16 = 556*8 = 1112*4 = 2224*2 = 4448, Как видоизменить этот способ для умножения на число, близкое к степени, двойки, скажем на 14 или на 35?
1.12. Деление на степень двойки Предложите способ деления чисел на степень двойки, подобный способу удвоения (см. задачу 1.11).
1.13. Умножение чисел второго десятка Для того чтобы перемножить два двузначных числа, меньших 20, достаточно сложить цифры единиц этих чисел и, увеличив сумму в 10 раз, прибавить к ней 100 и произведение тех же цифр.
Дайте обоснование предложенному способу.
1.14. Умножение чисел десятого десятка Для того чтобы перемножить два двузначных числа, близких к 100, достаточно вычесть из одного числа дополнение второго до 100 и, увеличив разность в 100 раз, прибавить к ней произведение дополнений исходных чисел до 100. Например, верны выкладки
93*98 = (93-2)100 + 2*7 = 9114. Дайте обоснование предложенному способу.
1.15. Умножение чисел, близких к 1000 При перемножении чисел 987 и 996 были проделаны вычисления:
987*996 = (987-4)1000 + 4*13 = 983 052. Убедитесь, что в результате найден верный ответ, и объясните способ его получения (сравните с задачей 1.14).
1.16. Устное умножение Докажите, что для перемножения двух чисел, у которых цифры единиц в сумме дают 10, а цифры других разрядов совпадают, достаточно число, получающееся в результате отбрасывания цифры единиц, умножить на следующее за ним натуральное число и, увеличив произведение в 100 раз, прибавить к нему произведение цифр единиц исходных чисел. Например, верны выкладки
62*68 = 6*7*100 + 2*8 = 4216. 1.17. Квадрат числа, оканчивающегося на 5 Сформулируйте общее правило, с помощью которого возведены в квадрат следующие числа:
852 = 8*9*100 + 25 = 7225, 1152= 11*12*100 + 25= 13225. Откуда вытекает справедливость этого правила?
1.18. Если числа оканчиваются на 5 Докажите, что для перемножения двух чисел, оканчивающихся на 5, достаточно отбросить у каждого числа последнюю цифру, а затем, увеличив большее из полученных чисел на 1, умножить его на меньшее из них и прибавить к результату полуразность тех же чисел, наконец, увеличить ответ в 100 раз и прибавить 25. Например, пользуясь указанным способом, находим произведения
1.19. С помощью квадратов Если вы хорошо помните или умеете быстро восстанавливать в памяти квадраты натуральных чисел, то вы сможете и быстро перемножить, скажем, числа 32 и 36 следующим способом:
32*36 = 342 - 22 = 1156 - 4 = 1152. Обоснуйте верность приведенных выкладок и подумайте, к каким парам чисел удобнее применять указанный способ перемножения
чисел.
1.20. Квадраты близких чисел Пусть вы помните квадрат какого-то числа и хотите по нему быстро восстановить квадрат числа, отличающегося от исходного на 1 или 2. Как это можно сделать, не производя операции возведения в квадрат?
Если вы помните только квадраты чисел, кратных 5, то без особого напряжения сможете восстанавливать квадраты остальных целых чисел. Как именно?
1.21. Следующий куб Пусть вам известен куб некоторого числа. Как с его помощью проще найти куб следующего числа?
1.22. Квадрат числа, близкого к "круглому" Быстрому возведению в квадрат может способствовать умение перемножать в уме любые числа с некоторыми числами специального вида, например
1922 = 200*184 + 82 = 36 864, 4122 = 400*424 + 122 = 169 744. На каком приеме основаны вычисления квадратов в данных примерах?
1.23. Следующие 25 квадратов Если вы знаете квадраты всех чисел от 1 до 25, то вам нет никакой необходимости заучивать квадраты следующих 25 чисел. Для возведения в квадрат любого числа, заключенного между 25 и 50, достаточно отнять от него 25 и, увеличив результат в 100 раз, прибавить к нему квадрат дополнения этого числа до 50. Например, справедливы равенства
372 = (37-25)100 + (50-37)2 = 1200 + 169 = 1369. Дайте обоснование предложенному способу.
1.24. Квадраты чисел, больших 50 Как изменить описанную в задаче 1.23 процедуру возведения в квадрат, чтобы она годилась и для двузначных чисел, больших 50?
1.25. Квадраты чисел, близких к 500 При возведении в квадрат числа 492 были проделаны вычисления
4922 = (492-250)1000 + (500-492)2 = 242 064. Убедитесь, что в результате найден верный ответ, и сформулируйте общее правило возведения в квадрат чисел, близких к 500 (сравните с задачами 1.23 и 1.24).