
12.1. Кратчайший маршрут катера совпадет с хордой АВ, перпендикулярной радиусу ОС, проходящему через островок D (если островок находится в центре круга, то все маршруты будут иметь одинаковую длину; поэтому мы рассмотрим здесь случай, когда D не совпадает с О, изображенный на рис. 27). Для доказательства этого утверждения проведем через точку D еще какую-либо хорду EF и проверим, что EF>AB. Действительно, перпендикуляр OG к хорде EF имеет меньшую длину, чем наклонная OD к этой хорде. Следовательно, EG>AD (так как в прямоугольных треугольниках OEG и OBD одинаковые гипотенузы ОЕ = ОВ, но разные катеты OG<OD), а значит, EF = 2EG>2DB = AB, т. е. хорда АВ короче любой другой хорды, проходящей через точку!).

Рис. 27
12.2. Завод нужно построить в точке Е пересечения диагоналей четырехугольника ABCD с вершинами в данных населенных пунктах (рис. 28). Докажем, что сумма расстояний от всех четырех пунктов А, В, С, D до любой точки F больше, чем до точки Е. Действительно, складывая неравенства
![]()
получаем неравенство AC + BD≤AF + BF + CF + DF, в котором равенство возможно только в случае, когда точка F лежит на обеих диагоналях АС и BD, т. е. когда F совпадает с Е. Именно это и требовалось доказать.

Рис. 28
12.3. Киоск нужно установить в любой точке, по обе стороны от которой расположено одинаковое количество домов (рис. 29). Если общее число домов нечетно, а сами дома находятся, скажем, в точках А1, А2, ..., Ak, О, Bk, ..., В2, B1, то киоск нужно поставить у дома О. Если же общее число домов четно, а сами дома находятся в точках А1, А2, ..., Ak, Bk, ..., В2, B1, то киоск можно поставить в любой точке О между домами Ak и Bk. Действительно, общая сумма расстояний от киоска до всех домов складывается из расстояния от киоска до среднего дома О (если таковой имеется) и сумм расстояний от киоска до каждой пары домов Ai и Bi, где i = 1, ..., k. При этом любая из указанных сумм не превосходит соответственно величины AiBi а равна ей тогда и только тогда, когда киоск находится между домами Ai, Bi. Таким образом, необходимым и достаточным условием минимальности общей суммы является принадлежность точки установки киоска каждому из отрезков А1В1, A2В2, ..., AkBk и, кроме того, совпадение этой точки с точкой О среднего дома, если число домов нечетно.

Рис. 29
12.4. Школу следует построить в том из населенных пунктов А или В, в котором живет больше детей. Действительно, пусть для определенности таким пунктом является пункт А. Тогда если школа расположена в некоторой точке О, то затраты на перевозку детей пропорциональны величине
![]()
которая не может быть меньше, чем b*АВ, так как а>b, ОА≥0 и ОА + ОВ≥АВ. С другой стороны, указанная величина принимает как раз значение b*АВ, но только в единственном случае - когда точка О совпадает с точкой А.
12.5. Один из двух населенных пунктов А или В, например В, отразим симметрично относительно канала (точнее, относительно его ближайшего берега). Если мы соединим отрезком полученную точку С с точкой A, то точка D пересечения этого отрезка с каналом и будет искомой точкой расположения водонапорной башни (рис. 30). В самом деле, для любой другой точки Е на том же берегу канала суммарная длина труб до точек A и В будет равна суммарной длине труб до точек A и С (в силу симметрии относительно канала имеем равенства ЕВ = ЕС и DB = DC), которая в свою очередь будет превосходить величину АС = AD + DB, что и требовалось доказать.

Рис. 30
12.6. Отразив симметрично относительно канала данный населенный пункт А, мы получим точку В, из которой достаточно теперь опустить перпендикуляр ВС к магистрали, пересекающий канал в искомой точке D (рис. 31). Для доказательства того, что кратчайший маршрут от точки А к каналу, а затем к магистрали представляет собой ломаную ADC, заметим следующее: от любой другой точки Е канала сумма расстояний до точки A и до канала будет равна сумме расстояний до точки В и до канала, которая в свою очередь будет превосходить величину BC = AD + DC.
Рис. 31
12.7. Один из двух населенных пунктов A или В, например В, перенесем мысленно по направлению к каналу на расстояние, равное ширине канала (рис. 32). Полученную точку С соединим отрезком с точкой A, тогда точка D пересечения этого отрезка с берегом канала, ближайшим к точке A, как раз и даст один из концов моста DE. Докажем, что маршрут ADEB будет кратчайшим из всех возможных. Действительно, для любого другого расположения моста FG (точка F не совпадает с точкой D, но лежит на том же берегу) имеем

т. е. другой маршрут получается только длиннее.

Рис. 32
12.8. Если проекции населенных пунктов A и B на линию железной дороги удалены друг от друга менее, чем на длину платформы, то саму платформу достаточно разместить так, чтобы обе проекции оказались на ней (сумма расстояний до платформы не может быть меньше, чем сумма расстояний до железной дороги, и этот минимум как раз реализуется в данном случае).
Если же указанные проекции удалены друг от друга более, чем на длину платформы, то сама платформа должна располагаться между этими проекциями (в противном случае ее можно передвинуть так, чтобы сумма расстояний от нее до пунктов А я В была еще меньше). Перенесем точку В на длину платформы вдоль железной дороги в сторону сближения с точкой А (рис. 33). Для полученной точки С выберем на железной дороге точку D, для которой сумма AD+CD минимальна (см. задачу 12.5). Эта точка D и будет представлять собой ближайший к точке А край платформы. Докажем, что расположение платформы DE удовлетворяет условию задачи. Действительно, для любого другого расположения FG (край F считаем ближайшим к А) платформы имеем
![]()
что и требовалось доказать.

Рис. 33
12.9. Любой (не обязательно кратчайший) маршрут разобьем на три участка: от первого населенного пункта А к точке В одной магистрали, от точки В до точки С другой магистрали и от точки С до населенного пункта D (рис. 34).

Рис. 34
Участок АВ отразим симметрично относительно первой магистрали, а участок CD - относительно второй. Тогда получим соответственно участки ЕВ и CF, причем расположение точек Е и F не зависит от самих участков, поскольку они просто симметричны точкам А и D. Итак, любой маршрут ABCD превращается в равный ему по длине маршрут EBCF с фиксированными началом Е и концом F. Следовательно, кратчайший среди маршрутов получается тогда, когда EBCF есть отрезок прямой. Этим условием точки В и С определяются однозначно: достаточно отразить симметрично точки А и D, получив точки Е и F, а затем найти точки пересечения прямой EF с магистралями. По точкам В и С, конечно, определяется и весь маршрут ABCD.
12.10. Заметим прежде всего, что все точки внутри угла между магистралями можно разбить на группы точек, имеющих одинаковые суммы расстояний до обеих магистралей.

Рис. 35
Такими группами точек будут являться отрезки АВ прямых, перпендикулярных биссектрисе угла (рис. 35). Действительно, любую точку С отрезка АВ можно соединить с вершиной О угла, образованного магистралями, и разбить тем самым равнобедренный треугольник ОАВ на два треугольника О АС и ОВС. Тогда если х и y - расстояния от точки С до сторон О А и Об, то площадь треугольника АО В будет равна сумме площадей треугольников О АС и ОВС, т. е. величине
![]()
не зависящей от выбора точки С на отрезке АВ. Поэтому сумма x + y также не зависит от выбора этой точки, причем из соображений подобия следует, что указанная сумма будет тем меньше, чем ближе отрезок АВ расположен к вершине О. Последняя близость полностью определяется расстоянием от точки О до проекции D точки С на биссектрису угла АОВ.
Таким образом, для выбора места строительства моста достаточно спроектировать речку на биссектрису угла АОВ и найти точку D проекции, ближайшую к точке О. Тогда мост нужно строить в точке С, которая проектируется в точку D.
12.11. Завод нужно построить в той из точек A, В или С пересечения магистралей, которая лежит против наибольшей стороны треугольника ABC (рис. 36). Если наибольших сторон две, то завод можно построить в любой точке меньшей стороны, а если треугольник равносторонний, то в любой точке треугольника. Действительно, считая для определенности справедливыми неравенства
![]()
и обозначая расстояния от точки D до сторон АВ, ВС и АС через х, y и z соответственно, получаем, что площадь S треугольника ABC равна сумме площадей треугольников ADB, BDC и ADC:


Рис. 36
Поэтому справедливо неравенство
![]()
в котором равенство имеет место

В соответствии с этими случаями получаем расположение точки D либо в точке С, либо на стороне АС, либо в любой точке треугольника ABC.
12.12. Магистраль должна проходить через тот из двух населенных пунктов А или В, который более удален от города С. Если же точки A и В равноудалены от точки С, то магистраль можно проводить через любую из них. Для доказательства предположим, что АС≥ВС, и рассмотрим точку D, симметричную точке В относительно точки С (рис. 37). Обозначим через х расстояние от магистрали до точки A, через y до точки В (оно же из соображений симметрии - расстояние до точки D). Магистраль пересекает либо отрезок А В в некоторой точке Е, либо отрезок AD в некоторой точке F. В первом случае площадь S треугольника ABC равна сумме площадей треугольников АЕС и ВЕС:
![]()
а во втором - площади треугольника ACD, которая равна сумме площадей треугольников AFC и DFC:
![]()

Рис. 37
Поэтому величина х + y будет тем меньше, чем больше длина отрезка СЕ пли CF соответственно, которая принимает наибольшее значение при E = F = A, если AC>BC = DC, а также еще и при Е = В (или, что то же, при F = D), если АС = BC = DC. Мы воспользовались тем фактом, что если точка Е лежит между точками A и B, то в одном из треугольников АЕС или ВЕС угол при вершине Е не является острым и против него лежит сторона АС или несоответственно, большая стороны ЕС. Аналогично, если точка F лежит между точками A и D, то сторона FC меньше хотя бы одной из сторон АС или DC. Итак, мы доказали полностью утверждение, сформулированное в начале решения.