15.21. Из конца А и середины С заданного отрезка АВ восставим перпендикуляры АN и СМ и проведем окружность с центром А и радиусом АВ (рис. 59). Отложим на перпендикуляре AN отрезок AD длины АС и проведем отрезок BD. Отложим на отрезке BD отрезок DE длины AD и проведем окружность с центром В и радиусом BE до пересечения с первой окружностью в точке F. На прямой AF построим точку G на расстоянии АВ от точки В, Тогда центр О окружности, описанной около правильного пятиугольника со стороной АВ, лежит на пересечении прямой СМ с серединным перпендикуляром к отрезку BG. Действительно, окружность, описанная около треугольника ABG, является описанной и около требуемого пятиугольника, так как вписанный угол BAG равен центральному углу BAF, опирающемуся на сторону FB десятиугольника, вписанного в первую окружность (см. задачу 15.17), и, следовательно, равному 36°. Поэтому углы BOG и AOB равны 72° каждый. Остальные две вершины пятиугольника лежат на пересечениях описанной окружности с перпендикуляром СМ и с первой окружностью соответственно.

000460.jpeg

Рис. 59

15.22. Построенный семиугольник не является правильным. В самом деле, пусть О - центр окружности, точка D - середина стороны АВ правильного треугольника, а точка Е - первая из засечек, сделанных на окружности радиусом 000461.jpeg (рис. 60). Найдем величину α угла АОЕ.

000462.jpeg

Рис. 60

Пусть R - радиус окружности, тогда 000463.jpeg Из равнобедренного треугольника АОЕ имеем

000464.jpeg

откуда

000465.jpeg

По таблицам синусов находим, что

000466.jpeg

Центральный угол β опирающегося на сторону правильного семиугольника равен 360°/7, т. е.

000467.jpeg

Следовательно, построенный семиугольник не является правильным. Однако из приведенных неравенств следует,

что

000468.jpeg

а значит, в результате шести откладываний дуги АЕ на окружности погрешность построений хотя и будет накапливаться, но не превзойдет 6(β - α)<42'<1°. Таким образом, описанный способ позволяет строить "практически правильный" семиугольник.

15.23. Пусть D-точка пересечения отрезков ВС и OA1, Е - середина отрезка ОА1, a CF - перпендикуляр к прямой A1E (рис. 61). Тогда если OA1 = R, то 000469.jpeg а из прямоугольных треугольников А2ОЕ и A2CF имеем

откуда получаем

000472.jpeg

000471.jpeg

Рис. 61

По таблицам тангенсов находим

000473.jpeg

поэтому центральный угол BОС, который должен составлять у правильного девятиугольника 40°, в нашем случае отличается от нужного значения не более чем на 25'. При этом погрешность у остальных углов также не превосходит 25': два других "лепестка" дают такие же углы, а углы между "лепестками" просто делятся пополам, отчего погрешность лишь уменьшается в два раза. Таким образом, полученный девятиугольник является "практически правильным".

15.24. Заметим, что при n = 3, 4, 6 предложенный метод дает правильные n-угольники. Пусть О - центр данной окружности, R - ее радиус, EF - перпендикуляр к диаметру АВ (рис. 62). Тогда при n>4 справедливы равенства

000474.jpeg

000475.jpeg

Рис. 62

Для угла 000476.jpeg имеем

000477.jpeg

000478.jpeg

а из подобия треугольников DOC и DFE получаем

000479.jpeg

откуда после преобразований находим

000480.jpeg

Подставляя в эту формулу значения n = 5, 7, 8, 9, 10, получаем следующие углы:

000481.jpeg

Сравнение с истинными значениями центральных углов, каковыми являются соответственно углы 72°, 513/7° ≈51°26', 45°, 40°, 36°, показывает, что при n≤7 метод дает исключительно высокую точность, а с ростом n погрешность растет. Однако преимущество этого метода состоит в том, что его можно единообразно использовать при различных значениях n.


Перейти на страницу:
Изменить размер шрифта: