
18.1. При несовпадении двух проведенных отрезков АВ можно сделать вывод о непригодности линейки для проведения прямых линий: ведь если бы проведенные отрезки были действительно прямыми, то отрезки были действительно прямыми, то они должны были бы совпасть (через точки А и В проходит ровно одна прямая). Если же проведенные отрезки совпадут, то это еще не будет означать, что линейка и в самом деле имеет ровный край. На рис. 112 изображена линейка с неровным краем, которая успешно пройдет проверку, описанную в условии задачи.

Рис. 112
18.2. Исправление описанной в условии задачи 18.1 проверки состоит в том, чтобы поворот линейки на 180° по плоскости бумаги заменить ее поворотом в пространстве вокруг прямой АВ. Если после такой исправленной проверки проведенные отрезки АВ совпадут, то линейка имеет ровный край. Действительно, предположив, что какая-то точка С первой из проведенных линий АВ не лежит на прямой АВ, мы получим, что точка С, симметричная точке С относительно прямой АВ, будет лежать на второй из проведенных линий АВ (рис. 113). При этом точки С и С не совпадут, что будет выявлено при исправленной проверке.

Рис. 113
18.3. Линейку можно повернуть по плоскости бумаги на 180°. В случае параллельности* краев линейки это приведет к совпадению двух проведенных отрезков CD (через точку С проходит ровно одна прямая, параллельная прямой АВ). Если же края линейки не параллельны, то прямые АВ и CD пересекаются в некоторой единственной точке О, лежащей где-то очень далеко от точек А, В, С, D. После описанного поворота линейки точка О перейдет в точку О', которая в случае совпадения двух проведенных отрезков CD будет являться еще одной точкой пересечения прямых АВ и CD, что невозможно. Таким образом, совпадение отрезков CD означает параллельность краев линейки.
18.4. Проведем прямую АВ и, приставив к ней угольник одним катетом, восставим перпендикуляр CD к прямой АВ в некоторой точке и рис. 114). Повернув угольник по плоскости бумаги на 90° вокруг точки С и приставив к прямой АВ угольник другим катетом, восставим еще раз перпендикуляр CD к этой прямой в точке С. Если два проведенных отрезка CD совпадут, то угольник имеет прямой угол, а если не совпадут, то используемый для построений угол не является прямым.

Рис. 114
18.5. Пусть мы проверяем треугольник ABC. Для установления равенства АВ = ВС достаточно перегнуть треугольник по биссектрисе угла ABC (это делается путем совмещения луча ВА с лучом ВС) и определить, совмещаются ли при этом точки А и С. Аналогично проверяются равенства ВС = АС и АВ = АС.
18.6. Данный кусок материи не обязательно имеет форму квадрата. Действительно, всем описанным в задаче условиям будет удовлетворять любой ромб, так как обе его диагонали являются его осями симметрии. Кстати, описанную в задаче процедуру можно рассматривать именно как проверку того, является ли четырехугольник ромбом.
18.7. Данный кусок материи не обязательно имеет форму квадрата. Действительно, всем описанным в задаче условиям будет удовлетворять любой прямоугольник, так как обе линии, соединяющие середины его противоположных сторон, являются его осями симметрии. Кстати, описанную в задаче процедуру можно рассматривать именно как проверку того, является ли четырехугольник прямоугольником.
18.8. Необходимо перегнуть четырехугольный кусок материи два раза. В самом деле, одного перегибания явно недостаточно для проверки того, является ли четырехугольник квадратом, так как наличие у него не только одной, а даже двух осей симметрии еще не позволяет утверждать, что четырехугольник есть квадрат (см. задачи 18.6 и 18.7). С другой стороны, если четырехугольник ABCD симметричен относительно диагонали АС и относительно прямой EF, проходящей через середины сторон АВ и CD (рис. 115), то он является квадратом. Действительно, применяя в определенном порядке указанные симметрии, получаем равенства AB = AD = BC = CD и ∠ ABC = ∠ BAD = 90°, из которых следует, что четырехугольник ABCD является ромбом и прямоугольником, т. е. квадратом.

Рис. 115
18.9. Гарантии того, что кусок материи имеет форму круга, дать нельзя, если нам не известно, по каким именно линиям производились сгибания материи. Например, если n этих линий выбраны так, как указано на рис. 116, т. е. делят полный угол на 2n одинаковых углов, то кусок материи может оказаться как правильным 2n-угольником, так и криволинейной фигурой, образованной поворотами какой-нибудь кривой линии типа ABC на углы, кратные углу АОС.

Рис. 116
Однако, как это ни удивительно, для проверки того, имеет ли данный кусок материи форму круга, достаточно убедиться, что он имеет всего лишь две оси симметрии, от которых требуется только, чтобы угол между ними измерялся иррациональным числом градусов.
18.10. Перегнув материю поперек тех двух ее краев, параллельность которых подлежит проверке, мы можем совместить один край ЕА с его продолжением ЕВ по общей их части (рис. 117), а затем проверить, совместился ли при этом другой край FC с его продолжением FD по общей их части (мы подразумеваем, что линия перегиба EF пересекает оба исследуемых края материи). Если на другом крае произошло совмещение, то прямые АВ и CD параллельны, так как перпендикуляр EF к прямой АВ (углы AEF и BEF равны в силу их симметрии) в этом случае является одновременно и перпендикуляром к прямой CD (углы CFE и DFE также равны в силу их симметрии). Если же на другом крае совмещения не произошло, то прямые АВ и CD не параллельны, так как отрезок EF в этом случае перпендикулярен прямой АВ, но не перпендикулярен прямой CD.

Рис. 117
Теперь найдем указанным способом все пары параллельных противоположных сторон данного четырехугольного куска материи. Если таких пар окажется две, то этот кусок имеет форму параллелограмма, если одна - то трапеции, а если ни одной - то ни то, ни другое. 18.11, Пусть угол А является наибольшим углом треугольника ABC (определить его можно, например, описанными ниже перегибаниями, позволяющими непосредственно сравнивать по величине любые два угла треугольника). Перегнем материю по линии EF (рис. 118) так, чтобы точка С совместилась с точкой А.

Рис. 118
Перегнем материю, не разворачивая после первого перегиба, по линии FG так, чтобы в результате луч FB совместился с лучом FC. Тогда если после этих двух перегибов точки В и С совместились, то угол А прямой, если отрезок FC оказался длиннее отрезка FB, то угол А острый (рис. 119), а если наоборот, то угол А тупой (рис. 120).

Рис. 119
Докажем последнее утверждение. Если точки В и С совместились, то AF = BF = CF и поэтому точки А, В и С лежат на окружности с центром F и диаметром ВС, откуда угол САБ прямой. Если AF = CF = BF, то возьмем на луче FB точку D, удовлетворяющую равенству DF = CF и, следовательно, по доказанному образующую прямой угол DAC. В случае BF<DF имеем ∠ ВAС<∠ DAС = 90°, а в случае BF&362;Df имеем ∠ BAC > ∠ DAC = 90°, что и требовалось доказать.
Рис. 120
18.12. Чтобы убедиться в вертикальности шеста (рис. 121), достаточно проверить, что шест находится в одной плоскости с некоторой вертикальной линией, а также в одной (другой) плоскости с некоторой другой вертикальной линией. Указанную проверку можно осуществить с помощью отвеса (бечевки с грузиком на конце): если расположить его перед собой так, чтобы верхние концы отвеса и шеста оказались на одной линии с глазом, то линии отвеса и шеста должны зрительно совпасть.

Рис. 121
Для обоснования этого способа проверки заметим, во-первых, что вертикальный шест должен лежать в одной плоскости с любой вертикальной прямой, а, во-вторых, если две параллельные прямые лежат в двух пересекающихся плоскостях соответственно, то эти прямые параллельны и линии пересечения плоскостей.
18.13. Проверка основана на свойстве плоскости содержать вместе с любыми двумя точками прямую, через них проходящую. Однако описанная проверка не позволяет отличить выпуклую поверхность от ровной, так как и у той, и у другой поверхности не будет никакого просвета с ниткой (просвет был бы возможен, если бы нитка могла пройти сквозь поверхность). Для исправления этой проверки можно предложить контролировать себя легким поднятием одного конца нитки: если при этом нитка прикасается к плоскости только другим своим концом, то выпуклости не наблюдается, если же она прикасается где-то в промежуточной точке между концами, то выпуклость есть (рис. 122).

Рис. 122
18.14. Будем предполагать, что стены в комнате вертикальны, а пол горизонтален (рис. 123). Отложим по нижнему краю стен от точки А, лежащей на линии их пересечения, отрезки АВ и АС длиной 3 и 4 произвольных единицы, например, дециметров. Тогда угол ВАС, представляющий собой линейный угол двугранного угла между стенами, будет прямым тогда и только тогда, когда длина отрезка ВС равна 5 единицам (если вас заинтересует вопрос о существовании других целочисленных прямоугольных треугольников, то читайте § 7).

Рис. 123
18.15. Будем предполагать, что стены коридора вертикальны. Выберем у нижнего края каждой из двух стен по одной точке А и В и отложим от этих точек вдоль нижнего края стен (рис. 124) в одном направлении отрезки BD к АС одинаковой длины, например длины АВ. Тогда если отрезки АВ и CD равны, то стены параллельны, а если эти отрезки не равны, то и стены не параллельны.

Рис. 124
В самом деле, из равенств AB = CD и AC = BD следует, что четырехугольник ABDC - параллелограмм, откуда стороны АС и BD параллельны. С другой стороны, если отрезки АС и BD параллельны, то из равенства AC = BD следует, что четырехугольник ABDC - параллелограмм и АВ = СD. Наконец, так как плоскости стен вертикальны, то их параллельность имеет место тогда и только тогда, когда они пересекаются с невертикальной плоскостью пола по параллельным прямым.