— Она может стать сколь угодно длинной, не правда ли? А если плоскость станет параллельной образующей конусов и уже нигде не пересечет конуса, куда денется конец нашего удлиненного эллипса? — с присущей ему манерой задавать загадки спросил Ферма.

— Он превратится в параболу! — обрадованно воскликнул Блез Паскаль.

— Браво, юноша! — восхитился Ферма. — Эрго — эллипс с бесконечно длинной большой осью не что иное, как парабола. Теперь продолжим дальше поворот нашей секущей плоскости, чтобы она уже не стала параллельной образующей и снова пересекла, но теперь уже не только верхний, но и нижний конус. Что произойдет на чертеже? Конец большой оси вместе с малым овалом эллипса вернется к нам, но уже с другой стороны, как бы обогнув немыслимо огромный шар вселенной, радиус которого равен бесконечности.

— Это же будет гипербола, сударь! — снова нашелся Блез Паскаль.

— Верно, юноша, гипербола, которая станет равнобокой, если секущая плоскость будет параллельна оси конусов.

— И вы считаете, метр, бесконечность реальной? — на великолепной латыни спросил Омар Торричелли.

— Безусловно, — не задумываясь, ответил Ферма.

— Вот вам еще одно доказательство существования господа бога! — вставил Декарт. — Не к этому ли я призывал и попов и ученых?

— Тссс! — замахал руками аббат Мерсенн. — Умоляю тебя, Рене Декарт, не ставить под сомнение слепую веру в господа бога, по крайней мере, в стенах монастыря, где она — основа нашего прибежища.

— Не буду, не буду! — буркнул Декарт. — Ведь не я доказываю реальность неисповедимой, как учит церковь, бесконечности, а Ферма!

— А во мне холодеет кровь при мысли о ней, — признался Блез Паскаль.

— Как беспомощен человек, обретаясь между ничтожеством и бесконечностью!

— Полно, юный друг, — ласково обратился к нему Ферма. — Вам ли это говорить, который, несмотря на свою юность, подарил людям «суммирующую машину», способную выполнять некоторые обязанности нашего мозга. Предвижу, что когда-нибудь далекие потомки вашей машины станут состязаться с самим человеком в остроте мышления, не говоря уже о быстроте счета.

— Умоляю вас, почтенные искатели истин, — воздев руки к небу, прервал Ферма аббат Мерсенн, — не затрагивайте богословских тем, ибо приписывание мертвому механизму способностей человеческой души может быть превратно истолковано святыми отцами церкви.

— Мой учитель Галилео Галилей понял бы господина Ферма, но за тех, кто принудил Галилея отречься от своих верных мыслей, я не рискну поручиться, — заметил Торричелли.

— Во всяком случае, имея в виду, — вступил Декарт, — что человеческое тело подобно мертвому механизму и только душа делает его живым и способным к мышлению, надо сразу сказать, что и машина господина Блеза Паскаля, как бы ее ни усовершенствовали потомки, никогда не сможет мыслить самостоятельно, а будет лишь выполнять предписанное человеком, обладающим душой.

— Но у нашего юного Паскаля есть и еще изобретения, которые отнюдь не говорят о его прозябании между ничтожеством и бесконечностью, — продолжал Ферма. — Достаточно вспомнить тачку, совмещающую в себе архимедов рычаг с колесом. Трудно ошибиться, представив себе несметное число подобных приспособлений, облегчающих труд людей на строительстве домов и дорог, храмов и крепостей не только во Франции, но и во всем мире! А предложение того же Блеза Паскаля учредить многоместный экипаж, следующий всегда по определенному маршруту и останавливающийся в условленных местах для высадки и приема пассажиров, не имеющий ни лошадей, ни карет[25]! Нет, дорогой Блез, даже в наш век «шпаги и знатности», как видим, есть умы, которые без бряцания оружием способствуют торжеству разума и благу людей.

— Такая оценка нашего молодого друга, — заметил Торричелли, — делает вам честь, господин Ферма, но ведь и вы, как начали нам рассказывать, хотели с помощью математики защитить интересы простых пейзан.

— Ах да! — подхватил Декарт. — Доскажите, что вы там намудрили, чтобы я мог вас опровергнуть.

Ферма вспыхнул:

— Я остановился на том, что разбил криволинейные участки на более мелкие, ограниченные кривыми второго порядка, а для них предложил метод отыскания точки их перегиба, то есть максимума и минимума. Определение же площади, ограниченной такой кривой, есть действие, обратное отысканию точки перегиба и проведению в ней касательной[26].

Ферма написал на аспидной доске мелом несколько формул.

Поднялся Декарт во весь свой внушительный рост и взметнул гривой волос:

— Мысли метра Ферма совершенно непонятны. Мне ясно лишь то, что он натолкнулся на метод случайно, не зная его основания. В результате, как ни прискорбно мне это сказать, но метр Ферма приходит к паралогизму, то есть к противоречиво, полностью уничтожающему его метод как некорректный.

Как известно, Ферма обычно не приводил обоснования предлагаемых им формул и методов. Однако старания современников получить по его методам ошибочный результат были тщетными, как и попытки доказать эти методы. За Ферма установилась слава математического волшебника, который знает нечто, людям не доступное, делясь с ними только выводами.

Однако сейчас, после резкого выпада Декарта, Ферма изменил своему обыкновению и стал методично, спокойно и дружелюбно разъяснять Декарту, как любимому ученику, суть его непонимания. Он старался ничем не унизить его, добиваясь лишь, чтобы тот понял его.

А понять Ферма его современникам было нелегко, ибо он, по существу, предвосхитил работы Исаака Ньютона и Г. Лейбница, независимо друг от друга открывших дифференциальное и интегральное исчисление, резко споря между собой, кто сделал это первым, забыв о методе Ферма, высказанном еще до их рождения. Метод, который позволял поистине волшебным путем (алгебраическим!) получать первую производную! (Скажем, скорость движения, имея кривую пройденного в отмечаемое время пути, то есть давая результат современного дифференцирования, а получение им площадей, ограниченных кривыми, представляло собой современное интегрирование, то есть суммирование бесконечно малых величин!) Декарт слушал объяснения Ферма и краснел. Вспомнилась история с уравнением, заключенным в надгробной надписи Диофанта, которое Ферма решил диковинным способом, не используя всех членов уравнения, искать который Декарт клятвенно отказался. Тогда Декарт нашел в себе силы побороть самого себя, но сейчас он возражал, опровергал, почти оскорблял Ферма, ведя с ним в присутствии многих «ученых секундантов» бескровную дуэль.

Но даже такой прямой и честной натуре, как философ Декарт, гонимый церковью, нужно было время, чтобы осознать свою неправоту и признать поражение в «дуэли».

Но поражение это было признано присутствующими учеными, принявшими сторону Ферма, что выразил от их имени Этьен Паскаль, математик, исследовавший интереснейшую фигуру «спираль Паскаля», витки которой, пересекаемые любым радиусом из ее центра, отстояли один от другого на равном расстоянии. Это исследование сделало его имя известным и спустя столетия. Именно он тогда в монастырской трапезной сказал:

— Ваше преподобие, господин аббат, дорогие ученые собратья! Мне кажется, что я выражу общее мнение, что тот метод верен, который дает верные результаты. Но именно этой особенностью и отличаются все методы метра Ферма, включая и не понятый уважаемым господином Декартом, критику которого все же надо рассматривать как побуждающую метра Ферма к обнародованию основания своего метода, за что нельзя не поблагодарить и метра Ферма, и господина Декарта. Как видим, истина, даже и математическая, рождается в споре.

Но Декарт, не желая признать себя побежденным, вскочил:

— Никогда, слышите ли, никогда научная истина не будет устанавливаться голосованием! Метр Ферма, оперируя здесь с кривыми, предложил расплывчатую систему координат с осями, расположенными под любым углом. Это непродуманно и неудобно. И я предлагаю свою «Универсальную математику», где использованы лишь прямоугольные координаты и общий алгебраический метод для решения любых задач.

вернуться

25

Омнибус, предложенный Б. Паскалем. (Примеч. авт.)

вернуться

26

Примечание автора для особо интересующихся. Метод Ферма, в свое время несправедливо оспоренный Декартом, предвосхищал дифференциальное и интегральное исчисление, хотя задачу решал алгебраически, без анализа бесконечно малых величин. В задаче разбивки прямой с длиной «a» на две части, так, чтобы квадрат одной (x2), помноженный на величину другой части = (ax), был бы максимальным, он приравнивал 2ax — 3x2 к нулю и получал, что x = 2 / 3a, то есть заменял современное дифференцирование и взятие первой производной.


Перейти на страницу:
Изменить размер шрифта: