Допустим, что в трубке находятся пары натрия. При выключении тока температура газа совпадает с температурой окружающей среды. При этой температуре энергия теплового движения атомов составляет около 1/30 эв, что значительно меньше порога устойчивости атомов натрия. Поэтому, когда атомы сталкиваются друг с другом или со стенками, они отскакивают, как твердые бильярдные шары, не меняя своего квантового состояния. При этих температурах атомы ведут себя, как элементарные частицы: они не проявляют никакой внутренней структуры. Их электронные конфигурации остаются неизменными; все атомы совершенно одинаковы.
Повысим теперь температуру газа, возбудив в трубке электрический разряд. Когда энергия, переданная атомам разрядом, начинает превосходить предел устойчивости, возбуждаются другие квантовые состояния, кроме основного. Возвращаясь в наиболее низкое квантовое состояние, атомы испускают характеристическое излучение; так, атомы натрия дают желтый свет, атомы лития — красный. На этом различии характерных цветов основано разнообразие городских огней. Возбуждением атомов в высшие квантовые состояния начинается нарушение тождественности атомов. Уже не все атомы оказываются одинаковыми, одни из них находятся в основном состоянии, другие — в различных возбужденных состояниях.
Теперь повысим температуру так, чтобы энергия столкновения атомов начала значительно превышать предел их устойчивости и чтобы электроны совсем оторвались от атомов. Тогда все квантовые состояния разрушатся и электроны будут двигаться, как частицы, без характерных волновых картин. Газ переходит в состояние плазмы, где электроны и ядра движутся весьма стремительно и беспорядочно. Нельзя найти даже две одинаково движущиеся частицы; свет, испускаемый плазмой, не имеет характеристических частот — это обычное тепловое излучение. Однако атомные ядра и электроны все еще сохраняют свою индивидуальность и тождественность. Они представляют собой элементарные частицы плазмы.
Перейдем к еще более высоким температурам, значительно превышающим температуры, достигаемые в лаборатории, таким, при которых начинают разрушаться стеклянные или металлические стенки обычных сосудов. Пусть температура столь высока, что энергии частиц превосходят предел устойчивости ядер. Такие температуры существуют только в центрах звезд. При этом ядра теряют свою тождественность, некоторые из них перейдут в более высокие квантовые состояния и начнут испускать своё характеристическое излучение — гамма-лучи большой энергии. Если температура станет еще выше, то энергия частиц станет столь большой, что ядра начнут разваливаться на составные части. При этом полностью утрачивается индивидуальность ядер и вещество превращается в газ, состоящий из хаотически движущихся протонов и нейтронов, смешанных с электронами, оторванными от атомов при значительно меньших температурах. В таких условиях вещество станет смесью элементарных частиц трех сортов[46]: протонов, нейтронов и электронов, движущихся совершенно беспорядочным образом.
Последовательность состояний, о которой мы здесь говорим, мы называем «квантовой шкалой», или «квантовой лестницей». Она устанавливается путем постепенного увеличения передаваемой энергии. На первой ступеньке этой лестницы вещество состоит из атомов, представляющих собой индивидуальные единицы; их внутренняя структура неизменна и жестка, а сами атомы Движутся, как бильярдные шары. На следующей ступеньке атомы распадаются на электроны и ядра, и теперь уже эти частицы оказываются индивидуальными единицами, неизменными и жесткими. На третьей ступеньке ядра распадаются на протоны и нейтроны; здесь единицами вещества являются протоны, нейтроны и электроны.
Существование квантовой лестницы позволило постепенно раскрыть строение неорганической материи. Исследуя явления при энергиях атомных порядков, мы не должны заботиться о внутреннем строении ядер, а изучая механику газов при обычных температурах, мы можем не интересоваться внутренним строением атомов. В первом случае мы можем считать ядра одинаковыми и неизменными единицами, т. е. элементарными частицами, во втором случае теми же свойствами обладают атомы. При этом наблюдаемые явления как бы упрощаются, и мы можем понять их, не зная внутренней структуры компонент, которые ведут себя как инертные единицы.
Квантовую лестницу можно продолжить и в сторону более низких энергий. Если охладить газообразный натрий до очень низких температур, то атомы натрия выстроятся правильными рядами, кристаллизуясь в металл натрий. В других веществах ступенька, находящаяся ниже атомной, еще интереснее. В большинстве веществ отдельные атомы существуют только при очень высоких температурах, характерных для пламени. При обычных температурах большинство атомов (но не атомы натрия, лития или неона) соединяется в группы и образует молекулы, которые находятся на следующей, более низкой ступеньке нашей квантовой лестницы. Они представляют характерные индивидуальные единицы; порог их устойчивости ниже, чем у атомов, вследствие большего размера молекул. Молекулу легче разложить на атомы, чем расщепить атом на ядро и электроны.
Интересно проследить за аналогичными явлениями на различных ступеньках квантовой лестницы. Мы наблюдаем, например, выделение энергии при соединении атомов в молекулы — химическое горение — и выделение энергии при слиянии маленьких ядер в большие — ядерное горение. Это два вида горения, очень несходные по количеству выделяемой энергии, но подобные в принципе; одно из них происходит на молекулярном уровне, другое — на ядерном.
Еще ниже на квантовой лестнице находятся макромолекулы; они представляют собой комбинации ряда особым образом расположенных обычных молекул. При известных условиях макромолекулы собираются в виде больших единиц, которые обладают удивительнейшими свойствами, — о них мы будем говорить более подробно в следующей главе. Это та ступень квантовой лестницы, на которой находится жизнь.
Последняя и низшая ступень занята веществом, находящимся при очень низкой температуре. Почти все вещества кристаллизуются при достаточном охлаждении; при этом их молекулы или атомы располагаются в правильном порядке. Тепловое движение исчезает, и устанавливается полный порядок, порядок совершенной неподвижности.
Когда мы достигаем самых низших ступенек квантовой лестницы — макромолекул и кристаллов, соотношение между размером и устойчивостью следует применять с некоторыми предосторожностями. Так как макромолекулы и кристаллы очень велики, можно подумать, что они крайне неустойчивы. Однако здесь неустойчивость, которая следует из соотношения размер — устойчивость, относится только к несущественным свойствам этих объектов. Например, макромолекулы не обладают жесткостью, их можно изгибать и складывать с очень небольшой затратой энергии; в кристаллах можно возбуждать внутренние колебания, затрачивая весьма малые энергии, — такие колебания возникают при действии обычных звуковых волн. Однако важные структурные свойства подобных объектов, например атомная структура макромолекул или правильное расположение атомов в кристаллической решетке, вполне устойчивы. Такие свойства определяются электронными конфигурациями атомов, и, следовательно, их устойчивость равносильна устойчивости электронных конфигураций в атомах.
Каждая ступенька на квантовой лестнице отвечает состоянию материи при определенных условиях (рис. 49).
Рис. 49. «Квантовая лестница».
Чем ниже ступенька, тем выше организация и дифференциация материи. Каждый шаг вниз по лестнице позволяет материи приобретать специфические формы, которые становятся тем разнообразнее, чем ниже мы спускаемся. На самой высшей ступеньке, о которой мы только что говорили, протоны, нейтроны и электроны движутся совершенно беспорядочно. На ближайшей более низкой ступеньке, в плазме, протоны и нейтроны находятся в упорядоченном виде в ядрах, но электроны по-прежнему находятся в беспорядочном движении. Еще ниже электроны присоединяются к ядрам и образуют атомы; они принимают свои типичные волновые конфигурации, характерные для атомов.
46
И, разумеется, световых квантов, которые тоже «материя», хотя они не имеют массы и могут испускаться и поглощаться. Кроме того, при условиях, о которых говорит автор, в веществе будет находиться очень много положительных электронов — позитронов. (Прим. перев.).