– Но действительно ли речь идет о поэте? – спросил я. – Насколько мне известно, у министра есть брат, и оба они приобрели определенную известность в литературном мире. Однако министр, если не ошибаюсь, писал о дифференциальном исчислении. Он математик, а вовсе не поэт.
– Вы ошибаетесь. Я хорошо его знаю – он и то и другое. Как поэт и математик, он должен обладать способностью к логическим рассуждениям, а будь он всего только математиком, он вовсе не умел бы рассуждать логически, и в результате префект легко справился бы с ним.
– Меня поражают, – сказал я, – эти ваши суждения, против которых восстанет голос всего света. Ведь не хотите же вы опровергнуть представление, проверенное веками!
Математическая логика издавна считалась логикой parexcellence *.
– Il у a a parier, – возразил Дюпен цитируя Шамфора, – que toute idee publioue, toute convention recue est une sot-tise, car elle a convenue au plus grand notnbre» *. He спорю: математики сделали все, от них зависевшее, чтобы укрепить свет в заблуждении, на которое вы ссылаетесь и которой остается заблуждением, как бы его ни выдавали за истину. Они, например, с искусством, заслуживающим лучшего применения, исподтишка ввели термин «анализ» в алгебре. В данном обмане повинны французы, но если термин имеет хоть какое-то значение, если слова обретают ценность благодаря своей точности, то «анализ» столь же мало означает «алгебра», как латинское «ambitus»* – «амбицию», a «religio»* – «религию».
– Я предвижу, что вам не избежать ссоры с некоторыми парижскими алгебраистами, – сказал я. – Однако продолжайте.
– Я оспариваю универсальность, а тем самым и ценность любой логики, которая культивируется в какой-либо иной форме, кроме абстрактной. И в частности, я оспариваю логику, выводимую из изучения математики. Математика – это наука о форме и количестве, и математическая логика – это всего лишь логика, прилагаемая к наблюдениям над формой и количеством. Предположение, будто истины даже того, что зовется «чистой» алгеброй, являются абстрактными или всеобщими истинами, представляет собой великую ошибку. И эта ошибка настолько груба, что мне остается только изумляться тому единодушию, с каким ее никто не замечает. Математические аксиомы – это отнюдь не аксиомы всеобщей истины. То, что справедливо для взаимоотношений формы и количества, часто оказывается вопиюще ложным в применении, например, к морали. В этой последней положение, что сумма частей равна целому, чаще всего оказывается неверным. Эта аксиома не подходит и для химии. При рассмотрении мотивов она также оказывается неверной, ибо два мотива, из которых каждый имеет какое-то значение, соединившись, вовсе не обязательно будут иметь значение, равное сумме их значений, взятых в отдельности. Существует еще много математических истин, которые остаются истинами только в пределах взаимоотношений формы и количества. Однако математик, рассуждая, по привычке исходит из своих частных мыслей так, словно они обладают абсолютно универсальным характером – , какими их, бесспорно, привык считать свет. Брайант в своей весьма ученой «Мифологии» упоминает аналогичный источник ошибок, когда он говорит: «Хотя мы не верим в языческие басни, однако мы постоянно забываемся и делаем из них выводы, как из чего-то действительно существующего». Тем не менее алгебраисты, сами язычники, неколебимо верят в «языческие басни» и выводят из них заключения не столько по причине провалов памяти, сколько благодаря непостижимому затмению мыслей. Короче говоря, мне еще не доводилось встречать математика, которому можно было бы доверять в чем-либо, кроме равенства корней, и который втайне не лелеял бы кредо, будто x2 +px всегда абсолютно и безусловно равняется q. Если хотите, то попробуйте в качестве опыта сказать кому-нибудь из этих господ, что, по вашему мнению, бывают случаи, когда x2 +px не вполне равняется q, но, втолковав ему, что вы имеете в виду, поторопитесь отойти от него подальше, иначе он, без всякого сомнения, набросится на вас с кулаками.
– Я хочу сказать, – продолжал Дюпен, так как я только засмеялся в ответ на его последние слова, – что, будь министр всего лишь математиком, префекту не пришлось бы давать мне этот чек. Однако я знал, что он не только математик, но и поэт, а потому оценивал случившееся, исходя из его способностей и учитывая особенности его положения. Я знал, кроме того, что он искушен в делах двора и смелый интриган. Такой человек, рассуждал я, не может не быть осведомлен об обычных полицейских методах. Он не мог не предвидеть нападения псевдограбителей – и события показали, что он его предвидел. Он обязательно должен был предположить, рассуждал я, что его дом будет подвергнут тайным обыскам. Его частые ночные отлучки, в которых префект с радостью усматривал залог своего успеха, мне представлялись хитростью: он давал полиции возможность провести самый тщательный обыск для того, чтобы заставить ее прийти к заключению, к которому Г, в конце концов и пришел, – к заключению, что письмо находится не в его доме, а где-то еще. Я только что подробно изложил вам ход мысли касательно неизменных принципов, лежащих в основе действий полицейских агентов, когда они ищут спрятанные предметы, – и я чувствовал, что тот же ход мысли неминуемо приведет министра к таким же выводам, что и меня. И заставит его пренебречь всеми обычными тайниками. Не мог же он быть столь слабоумен, рассуждал я, чтобы не видеть, что самые скрытые и недоступные недра его дома будут столь же достижимы для глаз, игл, буравчиков и сильных луп префекта, как и стоящие на виду незапертые шкафы. Короче говоря, я понял, что он будет вынужден прибегнуть к какой-то очень простой выдумке, если не предпочтет ее по доброй воле с самого начала. Возможно, вы не забыли, как хохотал префект, когда во время нашего первого разговора я высказал предположение, что эта загадка причиняет ему столько хлопот как раз из-за очевидности ее разгадки.
– Да, – сказал я. – Я отлично помню, как он веселился. Мне даже показалось, что с ним вот-вот случится родимчик.
– Материальный мир, – продолжал Дюпен, – изобилует аналогиями с миром нематериальным, а потому не так уж далеко от истины то правило риторики, которое утверждает, что метафору или уподобление можно использовать не только для украшения описания, но и для усиления аргументации. Например, принцип vis inertiae *, по-видимому, одинаков и в физике и в метафизике. Если для первой верно, что большое тело труднее привести в движение, нежели малое, и что полученный им момент инерции прямо пропорционален этой трудности, то и для второй не менее верно, что более могучие интеллекты, хотя они сильнее, постояннее и плодотворнее в своем движении, чем интеллекты малые, тем не менее начинают это движение с меньшей легкостью и более смущаются и колеблются на первых шагах. И еще: вы когда-нибудь замечали, какие уличные вывески привлекают наибольшее внимание?
– Никогда об этом не задумывался, – ответил я.
– Существует салонная игра, – продолжал Дюпен, – в которую играют с помощью географической карты. Один играющий предлагает другому найти задуманное слово – название города, реки, государства или империи – среди массы надписей, которыми пестрит карта. Новичок обычно пытается перехитрить своего противника, задумывая название, напечатанное наиболее мелким шрифтом, но опытный игрок , выбирает слова, простирающиеся через всю карту и напечатанные самыми крупными буквами. Такие названия, как и чересчур большие вывески, ускользают от внимания из-за того, что они слишком уж очевидны. Эта физическая особенность нашего зрения представляет собой полную аналогию мыслительной тупости, с какой интеллект обходит те соображения, которые слишком уж навязчиво самоочевидны. Но, по-видимому, эта особенность несколько выше или несколько ниже понимания нашего префекта. Ему ни на секунду не пришло в голову, что министр мог ,положить письмо на самом видном месте на обозрение всему свету – именно для того, чтобы помешать кому-либо его увидеть.
*
В высшей степени (фр.).
*
«Можно побиться об заклад, что всякая широко распространенная идея, всякая общепринятая условность есть глупость, ибо она принята наибольшим числом людей» (фр.).
*
Круговое движение (лат.)
*
Добросовестность (лат.)
*
Сила инерции (лат.).