Все основные элементарные функции: постоянные, степенная функция хa, показательная функция ax, тригонометрические функции sinx, cosx, tgx и ctgx и обратные тригонометрические функции arcsinx, arccosx, arctgx и arcctgx во всех внутренних точках своих областей определения имеют П., совпадающие с их значениями в этих точках. Но это не всегда бывает так. Функция

Большая Советская Энциклопедия (ПР) i-images-153143528.png
,

являющаяся суммой бесконечной геометрической прогрессии со знаменателем q = 1/(1 + x2), 0 < q < 1, в точке х = 0 имеет П., равный 1, ибо f (x) = 1 + x2 при x ¹ 0. Этот П. не совпадает со значением функции f в нуле: f (0) = 0. Функция же

Большая Советская Энциклопедия (ПР) i-images-169859864.png
, x ¹ 0,

вовсе не имеет П. при х ® 0, ибо уже для значений xn = 1/(p/2 + pn) последовательность соответствующих значений функции f (xn) = (-1) n не имеет П.

  Если П. функции при х ® х равен нулю, то она называется бесконечно малой при х ® х. Например, функция sinx бесконечно мала при х ® 0. Для того чтобы функция f имела при х ® х П., равный А, необходимо и достаточно, чтобы f (x) = A + a(x), где a(х) является бесконечно малой при х ® х

  Если при определении П. функции f в точке x рассматриваются только точки х, лежащие левее (правее) точки x, то получающийся П. называется пределом слева (справа) и обозначается

Большая Советская Энциклопедия (ПР) i-images-130703737.png
 (соответственно
Большая Советская Энциклопедия (ПР) i-images-129167174.png
).

  Функция имеет П. в некоторой точке, если её П. слева в этой точке равен её П. справа. Понятие П. функции обобщается и на случай, когда аргумент стремится к бесконечности:

Большая Советская Энциклопедия (ПР) i-images-173642100.png
,
Большая Советская Энциклопедия (ПР) i-images-190673997.png
,
Большая Советская Энциклопедия (ПР) i-images-127925598.png

  Например,

Большая Советская Энциклопедия (ПР) i-images-131130549.png

означает, что для любого e > 0 существует такое d > 0, что для всех х, удовлетворяющих условию x > d, выполняется неравенство ½f (x) - А½ < e.

  Примером функций, всегда имеющих П., являются монотонные функции. Так, если функция f определена на интервале (а, b) и не убывает, то в каждой точке х, а < х < b, она имеет конечный П. как слева, так и справа; в точке в П. справа, который конечен тогда и только тогда, когда функция f ограничена снизу, а в точке b П. слева, конечный в том и только в том случае, когда функция ограничена сверху. В общем же случае стремление к П. может носить разный, необязательно монотонный характер. Например, функция f (x) = x

Большая Советская Энциклопедия (ПР) i-images-188165673.png
 при х ® 0 стремится к нулю, бесконечное число раз переходя от возрастания к убыванию и обратно.

  Т. н. внутренний критерий (критерий Коши) существования П. функции в точке состоит в следующем: функция f имеет в точке x П. в том и только в том случае, если для любого e > 0 существует такое d > 0, что для всех точек х' и х'', удовлетворяющих условию ½х’ - x ½ < d, ½x'' — x½ < d, x'  ¹ x, x'’ ¹ x, выполняется неравенство ½f (x'' ) — f (x')½ < e.

  Для функций, как и для последовательностей, определяются понятия бесконечных П. вида

Большая Советская Энциклопедия (ПР) i-images-130078920.png
,
Большая Советская Энциклопедия (ПР) i-images-141398838.png
,
Большая Советская Энциклопедия (ПР) i-images-192019786.png
 и т.д.; в этих случаях функция f  называется бесконечно большой при х ® х, При х ® х + 0 или При х ® +¥ соответственно и т.д. Например,

Большая Советская Энциклопедия (ПР) i-images-130494246.png

означает, что для любого e > 0 существует такое d > 0, что для всех х, удовлетворяющих условию х < -d, выполняется неравенство f (x) > e.

  Расширение понятия предела функции. Если функция f определена на некотором множестве Е числовой прямой и точка x такова, что в любой её окрестности имеются точки множества Е, то аналогично данному выше определению П. функции, заданной в некоторой окрестности точки x, кроме, быть может, самой точки x, определяется понятие предела функции по множеству Е

Большая Советская Энциклопедия (ПР) i-images-193202051.png
,

для этого следует лишь в определении П. всегда дополнительно требовать, чтобы точка х принадлежала множеству Е: х Î Е.  П. последовательности xn, n = 1, 2,..., является при таком определении понятия П. частным случаем П. функции по множеству, а именно функции f, определённой на множестве натуральных чисел n формулой f (n) = xn, n = 1, 2,....

  Функция, равная нулю при рациональных х и единице при иррациональных, не имеет П. при х ® 0, однако по множеству рациональных чисел она при х ® 0 имеет П., равный нулю. Понятие П. числовой функции по множеству переносится и на функции многих переменных. В этом случае можно говорить, в частности, о П. в данном направлении, о П. по данной кривой, по данной поверхности и т.д. Кроме того, для функций многих переменных возникает понятие повторного предела, когда предельный переход совершается последовательно по разным переменным, например

Большая Советская Энциклопедия (ПР) i-images-161165621.png
. Распространяется понятие П. и на функции, которые могут принимать не только действительные, но и комплексные значения.

  Предел интегральных сумм. Ещё одно важное понятие П. возникает при определении интеграла. Пусть, например, функция f определена на отрезке [a, b]. Совокупность {xi} таких точек xi, что

  a = x < x1 <... < xi <... < xn-1 < xn  = b,

  наз. разбиением отрезка [a, b]. Пусть xi-1 £ xI  < xi, Dxi  =  xi - xi-1, i = 1, 2,..., n. Тогда сумма f (x1)Dx1 + f (x2)Dx2 +... + f (xn)Dxn называется интегральной суммой функции f. Число А является пределом интегральных сумм и называется определённым интегралом:


Перейти на страницу:
Изменить размер шрифта: