С. А. Щенков.

Оператор

Опера'тор, математическое понятие, в самом общем смысле означающее соответствие между элементами двух множеств Х и Y, относящее каждому элементу х из Х некоторый элемент у из Y. Эквивалентный смысл имеют термины: операция, отображение, преобразование, функция. Элемент у называется образом х, х прообразом у. В тех случаях, когда Х и Y — числовые множества, пользуются обычно термином «функция». О., отображающий бесконечномерное пространство в множество действительных или комплексных чисел, называется функционалом. Наиболее важным классом О. являются линейные операторы в линейных нормированных пространствах. Во многих вопросах физики и математического анализа важную роль играют дифференциальные и интегральные О. Изучением различных свойств О., действий над ними и применением их к решению различных математических задач занимается операторов теория.

Операторов теория

Опера'торов тео'рия, часть функционального анализа, посвященная изучению свойств операторов и применению их к решению различных задач. Понятие оператора — одно из самых общих математических понятий.

  Примеры:

  1) Отнеся каждому вектору (x1, x2, x3) вектор (x’1, x’’2, x’3) так, что x’i = ai1x1 + ai2x2 + ai3x3 (i = 1, 2, 3; ai1, ai2, ai3 — фиксированные числа), получим некоторый оператор.

  2) Операция (оператор) дифференцирования D [f (t)] = f’(t) относит каждой дифференцируемой функции f (t) её производную f’ (t).

  3) Операция (оператор) определённого интегрирования I =

Большая Советская Энциклопедия (ОП) i-images-141534859.png
относит каждой интегрируемой функции действительное число.

  4) Отнеся каждой функции f (t) её произведение j(t) f (t) на фиксированную функцию j(t), снова получаем оператор.

  Общая О. т. возникла в результате развития теории интегральных уравнений, решения задач на нахождение собственных функций и собственных значений для дифференциальных операторов (см., например, Штурма — Лиувилля задача) и др. разделов классического анализа. О. т. установила тесные связи между этими разделами математики и сыграла важную роль в их дальнейшем развитии. Ещё до возникновения общего понятия оператора операторные методы широко применялись в решении различных типов дифференциальных уравнений, обыкновенных и с частными производными (см. Операционное исчисление). О. т. представляет собой основной математический аппарат квантовой механики (см. Операторы в квантовой теории).

  Операторы в линейных пространствах. Чаще всего встречаются операторы, действующие в линейных нормированных пространствах (см. Линейное пространство), в частности в функциональных пространствах, т. е. отображения у = А (х) линейного пространства R или его части в некоторое линейное пространство R' (возможно, совпадающее с R). Этот класс операторов охватывает такие важнейшие понятия, как числовые функции, линейные преобразования евклидова пространства, дифференциальные и интегральные операторы (см. ниже) и т.д. Наиболее изученными и важными для приложений являются линейные операторы. Оператор называется линейным, если A (ax+by) = aА (х) + bА (у) для любых элементов х, у пространства R и любых чисел a, b. Если пространства R и R' нормированы, а отношение

Большая Советская Энциклопедия (ОП) i-images-150733230.png
  нормы А (х) к норме х ограничено, то линейный оператор A называется ограниченным, а верхнюю грань отношения
Большая Советская Энциклопедия (ОП) i-images-152313572.png
 его нормой. Ограниченность линейного оператора равносильна его непрерывности, т. е. тому, что А (Хп) ® А (х), когда Хп ® х. Оператор дифференцирования (пример 2) представляет собой один из важнейших примеров неограниченного (а следовательно, и не непрерывного) линейного оператора. См. также Линейный оператор.

  Приведённые выше примеры 1—4 представляют собой примеры линейных операторов. Дальнейшие примеры линейных операторов:

  5) Пусть k (s, t ) — непрерывная функция двух переменных, заданная в квадрате a £ s £ b, а £ t £ b. Формула

Большая Советская Энциклопедия (ОП) i-images-153811529.png

  определяет линейный интегральный оператор, называется оператором Фредгольма.

  6) Каждой абсолютно интегрируемой на всей прямой функции f (t) поставим в соответствие функцию

Большая Советская Энциклопедия (ОП) i-images-151174904.png

называется Фурье преобразованием исходной функции. Это соответствие также представляет собой линейный оператор.

  7) Левую часть линейного дифференциального уравнения

Большая Советская Энциклопедия (ОП) i-images-194744026.png

можно рассматривать как результат применения некоторого оператора, ставящего в соответствие функции x (t) функцию j(t). Такой оператор носит название линейного дифференциального оператора. Простейшим частным случаем линейного дифференциального оператора является оператор дифференцирования.

  Примеры нелинейных операторов:

  8) Пусть A[f (t)] = f 2(t); определённый т. о. оператор является нелинейным.

  9) Пусть

Большая Советская Энциклопедия (ОП) i-images-130405212.png

  (F — некоторая ограниченная непрерывная функция). Соответствие g ® h, определяемое этой формулой, представляет собой нелинейный интегральный оператор.

  Действия над операторами. Пусть дан оператор

у = А (х),

  причём никакие два разных элемента х и х' не переходят в один и тот же элемент у. Тогда каждому образу у отвечает его единств. прообраз х. Это соответствие называется обратным оператором и обозначают

х = А–1(у).

  Построение обратного оператора эквивалентно решению уравнения у = А (х) относительно х (отыскание неизвестного прообраза по данному образу).

  Если A1 и А2 — два оператора, отображающих R в R', то их суммой А = A1 + A2 называется оператор, определяемый равенством А (х) = A1(x) + A2(x). Если оператор A1 переводит R в R', а A2 переводит R' в R”, то результат их последовательного применения представляет собой оператор, отображающий R в R”; его называют произведением A2A1 операторов A1 и A2. Если, в частности, рассматриваются операторы, переводящие некоторое линейное пространство в себя, то сумма и произведение двух таких операторов всегда определены. Результат последовательного применения п раз одного и того же оператора А есть n-я степень An этого оператора. Например, n-я степень оператора дифференцирования есть оператор n-kpaтного дифференцирования Dn [f (t)] = f (n)(t). Произведение lА оператора А на число l определяется формулой


Перейти на страницу:
Изменить размер шрифта: