Even land bridges couldn’t explain some things. One species of trilobite that was well known in Europe was also found to have lived on Newfoundland-but only on one side. No one could persuasively explain how it had managed to cross two thousand miles of hostile ocean but then failed to find its way around the corner of a 200-mile-wide island. Even more awkwardly anomalous was another species of trilobite found in Europe and the Pacific Northwest but nowhere in between, which would have required not so much a land bridge as a flyover. Yet as late as 1964 when the Encyclopaedia Britannica discussed the rival theories, it was Wegener’s that was held to be full of “numerous grave theoretical difficulties.”

To be sure, Wegener made mistakes. He asserted that Greenland is drifting west by about a mile a year, which is clearly nonsense. (It’s more like half an inch.) Above all, he could offer no convincing explanation for how the landmasses moved about. To believe in his theory you had to accept that massive continents somehow pushed through solid crust, like a plow through soil, without leaving any furrow in their wake. Nothing then known could plausibly explain what motored these massive movements.

It was Arthur Holmes, the English geologist who did so much to determine the age of the Earth, who suggested a possible way. Holmes was the first scientist to understand that radioactive warming could produce convection currents within the Earth. In theory these could be powerful enough to slide continents around on the surface. In his popular and influential textbook Principles of Physical Geology, first published in 1944, Holmes laid out a continental drift theory that was in its fundamentals the theory that prevails today. It was still a radical proposition for the time and widely criticized, particularly in the United States, where resistance to drift lasted longer than elsewhere. One reviewer there fretted, without any evident sense of irony, that Holmes presented his arguments so clearly and compellingly that students might actually come to believe them.

Elsewhere, however, the new theory drew steady if cautious support. In 1950, a vote at the annual meeting of the British Association for the Advancement of Science showed that about half of those present now embraced the idea of continental drift. (Hapgood soon after cited this figure as proof of how tragically misled British geologists had become.) Curiously, Holmes himself sometimes wavered in his conviction. In 1953 he confessed: “I have never succeeded in freeing myself from a nagging prejudice against continental drift; in my geological bones, so to speak, I feel the hypothesis is a fantastic one.”

Continental drift was not entirely without support in the United States. Reginald Daly of Harvard spoke for it, but he, you may recall, was the man who suggested that the Moon had been formed by a cosmic impact, and his ideas tended to be considered interesting, even worthy, but a touch too exuberant for serious consideration. And so most American academics stuck to the belief that the continents had occupied their present positions forever and that their surface features could be attributed to something other than lateral motions.

Interestingly, oil company geologists had known for years that if you wanted to find oil you had to allow for precisely the sort of surface movements that were implied by plate tectonics. But oil geologists didn’t write academic papers; they just found oil.

There was one other major problem with Earth theories that no one had resolved, or even come close to resolving. That was the question of where all the sediments went. Every year Earth’s rivers carried massive volumes of eroded material-500 million tons of calcium, for instance-to the seas. If you multiplied the rate of deposition by the number of years it had been going on, it produced a disturbing figure: there should be about twelve miles of sediments on the ocean bottoms-or, put another way, the ocean bottoms should by now be well above the ocean tops. Scientists dealt with this paradox in the handiest possible way. They ignored it. But eventually there came a point when they could ignore it no longer.

In the Second World War, a Princeton University mineralogist named Harry Hess was put in charge of an attack transport ship, the USS Cape Johnson. Aboard this vessel was a fancy new depth sounder called a fathometer, which was designed to facilitate inshore maneuvers during beach landings, but Hess realized that it could equally well be used for scientific purposes and never switched it off, even when far out at sea, even in the heat of battle. What he found was entirely unexpected. If the ocean floors were ancient, as everyone assumed, they should be thickly blanketed with sediments, like the mud on the bottom of a river or lake. But Hess’s readings showed that the ocean floor offered anything but the gooey smoothness of ancient silts. It was scored everywhere with canyons, trenches, and crevasses and dotted with volcanic seamounts that he called guyots after an earlier Princeton geologist named Arnold Guyot. All this was a puzzle, but Hess had a war to take part in, and put such thoughts to the back of his mind.

After the war, Hess returned to Princeton and the preoccupations of teaching, but the mysteries of the seafloor continued to occupy a space in his thoughts. Meanwhile, throughout the 1950s oceanographers were undertaking more and more sophisticated surveys of the ocean floors. In so doing, they found an even bigger surprise: the mightiest and most extensive mountain range on Earth was-mostly-underwater. It traced a continuous path along the world’s seabeds, rather like the stitching on a baseball. If you began at Iceland, you could follow it down the center of the Atlantic Ocean, around the bottom of Africa, and across the Indian and Southern Oceans, below Australia; there it angled across the Pacific as if making for Baja California before shooting up the west coast of the United States to Alaska. Occasionally its higher peaks poked above the water as an island or archipelago-the Azores and Canaries in the Atlantic, Hawaii in the Pacific, for instance-but mostly it was buried under thousands of fathoms of salty sea, unknown and unsuspected. When all its branches were added together, the network extended to 46,600 miles.

A very little of this had been known for some time. People laying ocean-floor cables in the nineteenth century had realized that there was some kind of mountainous intrusion in the mid-Atlantic from the way the cables ran, but the continuous nature and overall scale of the chain was a stunning surprise. Moreover, it contained physical anomalies that couldn’t be explained. Down the middle of the mid-Atlantic ridge was a canyon-a rift-up to a dozen miles wide for its entire 12,000-mile length. This seemed to suggest that the Earth was splitting apart at the seams, like a nut bursting out of its shell. It was an absurd and unnerving notion, but the evidence couldn’t be denied.

Then in 1960 core samples showed that the ocean floor was quite young at the mid-Atlantic ridge but grew progressively older as you moved away from it to the east or west. Harry Hess considered the matter and realized that this could mean only one thing: new ocean crust was being formed on either side of the central rift, then being pushed away from it as new crust came along behind. The Atlantic floor was effectively two large conveyor belts, one carrying crust toward North America, the other carrying crust toward Europe. The process became known as seafloor spreading.

When the crust reached the end of its journey at the boundary with continents, it plunged back into the Earth in a process known as subduction. That explained where all the sediment went. It was being returned to the bowels of the Earth. It also explained why ocean floors everywhere were so comparatively youthful. None had ever been found to be older than about 175 million years, which was a puzzle because continental rocks were often billions of years old. Now Hess could see why. Ocean rocks lasted only as long as it took them to travel to shore. It was a beautiful theory that explained a great deal. Hess elaborated his ideas in an important paper, which was almost universally ignored. Sometimes the world just isn’t ready for a good idea.


Перейти на страницу:
Изменить размер шрифта: