The crust and part of the outer mantle together are called the lithosphere (from the Greek lithos, meaning “stone”), which in turn floats on top of a layer of softer rock called the asthenosphere (from Greek words meaning “without strength”), but such terms are never entirely satisfactory. To say that the lithosphere floats on top of the asthenosphere suggests a degree of easy buoyancy that isn’t quite right. Similarly it is misleading to think of the rocks as flowing in anything like the way we think of materials flowing on the surface. The rocks are viscous, but only in the same way that glass is. It may not look it, but all the glass on Earth is flowing downward under the relentless drag of gravity. Remove a pane of really old glass from the window of a European cathedral and it will be noticeably thicker at the bottom than at the top. That is the sort of “flow” we are talking about. The hour hand on a clock moves about ten thousand times faster than the “flowing” rocks of the mantle.
The movements occur not just laterally as the Earth’s plates move across the surface, but up and down as well, as rocks rise and fall under the churning process known as convection. Convection as a process was first deduced by the eccentric Count von Rumford at the end of the eighteenth century. Sixty years later an English vicar named Osmond Fisher presciently suggested that the Earth’s interior might well be fluid enough for the contents to move about, but that idea took a very long time to gain support.
In about 1970, when geophysicists realized just how much turmoil was going on down there, it came as a considerable shock. As Shawna Vogel put it in the book Naked Earth: The New Geophysics: “It was as if scientists had spent decades figuring out the layers of the Earth’s atmosphere-troposphere, stratosphere, and so forth-and then had suddenly found out about wind.”
How deep the convection process goes has been a matter of controversy ever since. Some say it begins four hundred miles down, others two thousand miles below us. The problem, as Donald Trefil has observed, is that “there are two sets of data, from two different disciplines, that cannot be reconciled.” Geochemists say that certain elements on Earth’s surface cannot have come from the upper mantle, but must have come from deeper within the Earth. Therefore the materials in the upper and lower mantle must at least occasionally mix. Seismologists insist that there is no evidence to support such a thesis.
So all that can be said is that at some slightly indeterminate point as we head toward the center of Earth we leave the asthenosphere and plunge into pure mantle. Considering that it accounts for 82 percent of the Earth’s volume and 65 percent of its mass, the mantle doesn’t attract a great deal of attention, largely because the things that interest Earth scientists and general readers alike happen either deeper down (as with magnetism) or nearer the surface (as with earthquakes). We know that to a depth of about a hundred miles the mantle consists predominantly of a type of rock known as peridotite, but what fills the space beyond is uncertain. According to a Nature report, it seems not to be peridotite. More than this we do not know.
Beneath the mantle are the two cores-a solid inner core and a liquid outer one. Needless to say, our understanding of the nature of these cores is indirect, but scientists can make some reasonable assumptions. They know that the pressures at the center of the Earth are sufficiently high-something over three million times those found at the surface-to turn any rock there solid. They also know from Earth’s history (among other clues) that the inner core is very good at retaining its heat. Although it is little more than a guess, it is thought that in over four billion years the temperature at the core has fallen by no more than 200°F. No one knows exactly how hot the Earth’s core is, but estimates range from something over 7,000°F to 13,000°F-about as hot as the surface of the Sun.
The outer core is in many ways even less well understood, though everyone is in agreement that it is fluid and that it is the seat of magnetism. The theory was put forward by E. C. Bullard of Cambridge University in 1949 that this fluid part of the Earth’s core revolves in a way that makes it, in effect, an electrical motor, creating the Earth’s magnetic field. The assumption is that the convecting fluids in the Earth act somehow like the currents in wires. Exactly what happens isn’t known, but it is felt pretty certain that it is connected with the core spinning and with its being liquid. Bodies that don’t have a liquid core-the Moon and Mars, for instance-don’t have magnetism.
We know that Earth’s magnetic field changes in power from time to time: during the age of the dinosaurs, it was up to three times as strong as now. We also know that it reverses itself every 500,000 years or so on average, though that average hides a huge degree of unpredictability. The last reversal was about 750,000 years ago. Sometimes it stays put for millions of years-37 million years appears to be the longest stretch-and at other times it has reversed after as little as 20,000 years. Altogether in the last 100 million years it has reversed itself about two hundred times, and we don’t have any real idea why. It has been called “the greatest unanswered question in the geological sciences.”
We may be going through a reversal now. The Earth’s magnetic field has diminished by perhaps as much as 6 percent in the last century alone. Any diminution in magnetism is likely to be bad news, because magnetism, apart from holding notes to refrigerators and keeping our compasses pointing the right way, plays a vital role in keeping us alive. Space is full of dangerous cosmic rays that in the absence of magnetic protection would tear through our bodies, leaving much of our DNA in useless tatters. When the magnetic field is working, these rays are safely herded away from the Earth’s surface and into two zones in near space called the Van Allen belts. They also interact with particles in the upper atmosphere to create the bewitching veils of light known as the auroras.
A big part of the reason for our ignorance, interestingly enough, is that traditionally there has been little effort to coordinate what’s happening on top of the Earth with what’s going on inside. According to Shawna Vogel: “Geologists and geophysicists rarely go to the same meetings or collaborate on the same problems.”
Perhaps nothing better demonstrates our inadequate grasp of the dynamics of the Earth’s interior than how badly we are caught out when it acts up, and it would be hard to come up with a more salutary reminder of the limitations of our understanding than the eruption of Mount St. Helens in Washington in 1980.
At that time, the lower forty-eight United States had not seen a volcanic eruption for over sixty-five years. Therefore the government volcanologists called in to monitor and forecast St. Helens’s behavior primarily had seen only Hawaiian volcanoes in action, and they, it turned out, were not the same thing at all.
St. Helens started its ominous rumblings on March 20. Within a week it was erupting magma, albeit in modest amounts, up to a hundred times a day, and being constantly shaken with earthquakes. People were evacuated to what was assumed to be a safe distance of eight miles. As the mountain’s rumblings grew St. Helens became a tourist attraction for the world. Newspapers gave daily reports on the best places to get a view. Television crews repeatedly flew in helicopters to the summit, and people were even seen climbing over the mountain. On one day, more than seventy copters and light aircraft circled the summit. But as the days passed and the rumblings failed to develop into anything dramatic, people grew restless, and the view became general that the volcano wasn’t going to blow after all.