Atomic power was needed-demanded.

Atomic engineers lived through the period in an agony of indecision. Perhaps a breeder pile could be controlled. Or perhaps if it did go out of control it would simply blow itself apart and thus extinguish its own fires. Perhaps it would explode like several atom bombs but with low efficiency. But it might-it just might-explode its whole mass of many tons of uranium at once and destroy the human race in the process.

There is an old story, not true, which tells of a scientist who had made a machine which would instantly destroy the world, so he believed, if he closed one switch. He wanted to know whether or not lie was right. So he closed the switch-and never found out.

The atomic engineers were afraid to close the switch.

"It was Destry's mechanics of infinitesimals that showed a way out of the, dilemma," King went on. "His equations appeared to predict that such an atomic explosion, once started, would disrupt the molar mass enclosing it so rapidly that neutron loss through the outer surface of the fragments would dampen the progression of the atomic explosion to zero before complete explosion could be reached. In an atom bomb such damping actually occurs.

"For the mass we use in the pile, his equations predicted possible force of explosion one-seventh of one percent of the force of complete explosion. That alone, of course, would be incomprehensibly destructive-enough to wreck this end of the state. Personally, I've never been sure that is all that would happen."

"Then why did you accept this job?" inquired Lentz.

King fiddled with items on his desk before replying. "I couldn't turn it down, doctor I couldn't. If I had refused, they would have gotten someone else-and it was an opportunity that comes to a physicist once in history."

Lentz nodded. "And probably they would- have gotten someone not as competent. I understand, Dr. King-you were compelled by the 'truth-tropism' of the scientist. He must go where the data is to be found, even if it kills him. But about this fellow Destry, I've never liked his mathematics; he postulates too much."

King looked up in quick surprise, then recalled that this was the man who had refined and given rigor to the calculus of statement. "That's just the hitch," he agreed. "His work is brilliant, but I've never been sure that his predictions were worth the paper they were written on. Nor, apparently," he added bitterly, "do my junior engineers."

He told the psychiatrist Of the difficulties they had had with personnel, of how the most carefully selected men would, sooner or later, crack under the strain. "At first I thought it might be some degenerating effect from the neutron radiation that leaks out through the shielding, so we improved the screening and the personal armor. But it didn't help. One young fellow who had joined us after the new screening was installed became violent at dinner one night, and insisted that a pork chop was about to explode. I hate to think of what might have happened if he had been on duty at the pile when he blew up."

The inauguration of the system of constant psychological observation had greatly reduced the probability of acute danger resulting from a watch engineer cracking up, but King was forced to admit that the system was not a success; there had actually been a marked increase in psychoneuroses, dating from that time.

"And that's the picture, Dr. Lentz. It gets worse all the time. It's getting me now. The strain is telling on me; I can't sleep, and I don't think my judgment is as good as it used to be-I have trouble making up my mind, of coming to a decision. Do you think you can do anything for us?"

But Lentz had no immediate relief for his anxiety. "Not so fast, superintendent," he countered. "You have given me the background, but I have no real data as yet. I must look around for a while, smell out the situation for myself, talk to your engineers, perhaps have a few drinks with them, and get acquainted. That is possible, is it not? Then in a few days, maybe, we know where we stand."

King had no alternative but to agree.

"And it is well that your young men do not know what I am here for. Suppose I am your old friend, a visiting physicist, eh?"

"Why, yes-of course. I can see to it that that idea gets around. But say-" King was reminded again of something that had bothered him from the time Silard had first suggested Lentz' name. "May I ask a personal question?"

The merry eyes were undisturbed. "Go ahead."

"I can't help but be surprised that one man should attain eminence in two such widely differing fields as psychology and mathematics. And right now I'm perfectly convinced of your ability to pass yourself off as a physicist. I don't understand it."

The smile was more amused, without being in the least patronizing, nor offensive. "Same subject," he answered.

"Eh? How's that-"

"Or rather, both mathematical physics and psychology are branches of the same subject, symbology. You are a specialist; it' would not necessarily come to your attention."

"I still don't follow you."

"No? Man lives in a world of ideas. Any phenomenon is so complex that he cannot possibly grasp the whole of it. He abstracts certain characteristics of a given phenomenon as an idea, then represents that idea as a symbol, be it a word or a mathematical sign. Human reaction is almost entirely reaction to symbols, and only negligibly to phenomena. As a matter Of fact," he continued, removing the cigarette holder from his mouth and settling into his subject, "it can be demonstrated that the human mind can think only in terms of symbols.

"When we think, we let symbols operate on other symbols in certain, set fashions-rules of logic, or rules of mathematics. If the symbols have been abstracted so that they are structurally similar to the phenomena they stand for, and if the symbol operations are similar in structure and order to the operations of phenomena in the ~real~ world, we think sanely. If our logic-mathematics, or our word-symbols, have been poorly chosen, we think not sanely.

"In mathematical physics you are concerned with making your symbology fit physical phenomena. In psychiatry I am concerned with precisely the same thing, except that I am more immediately concerned with the man who does the thinking than with the phenomena he is thinking about. But the same subject, always the dame subject."

"We're not getting anyplace, Gus." Harper put down his slide rule and frowned.

"Seems like it, Cal," Erickson grudgingly admitted.

"Damn it, though-there ought to be some reasonable way of tackling the problem. What do we need? Some form of concentrated, controllable power for rocket fuel. What have we got? Power galore through fission. There must be some way to bottle that power, and serve it out when we need it-and the answer is some place in one of the radioactive~ series. I know it." He stared glumly around the laboratory as if expecting to find the answer written somewhere on the lead-sheathed walls.

"Don't be so down in the mouth about it. You've got me convinced there is an answer; let's figure out how to find it. In the first place the three natural radioactive series are out, aren't they?"

"Yes ... at least we had agreed that all that ground had been fully covered before."

"Okay; we have to assume that previous investigators have done what their notes show they have done-otherwise we might as well not believe anything, and start checking on everybody from Archimedes to date. Maybe that is indicated, but Methuselah himself couldn't carry out such an assignment. What have we got left?"

"Artificial radioactives."

"All right. Let's set up a list of them, both those that have been made up to now, and those that might possibly be made in the future. Call that our group-or rather, field, if you want to be pedantic about definitions. There are a limited number of operations that can be performed on each member of the group, and on the members taken in combination. Set it up."


Перейти на страницу:
Изменить размер шрифта: