CO2 растворяется в воде с образованием угольной кислоты. В 1906 О. Дильс получил недоокись У. C3O2. Все формы У. устойчивы к щелочам и кислотам и медленно окисляются только очень сильными окислителями (хромовая смесь, смесь концентрированных HNO3 и KClO3 и др.). «Аморфный» У. реагирует с фтором при комнатной температуре, графит и алмаз — при нагревании. Непосредственное соединение У. с хлором происходит в электрической дуге; с бромом и иодом У. не реагирует, поэтому многочисленные углерода галогениды синтезируют косвенным путём. Из оксигалогенидов общей формулы COX2 (где Х — галоген) наиболее известна хлорокись COCl2 (фосген). Водород с алмазом не взаимодействует; с графитом и «аморфным» У. реагирует при высоких температурах в присутствии катализаторов (Ni, Pt): при 600—1000 °С образуется в основном метан CH4, при 1500— 2000 °С — ацетилен C2H2, в продуктах могут присутствовать также др. углеводороды, например этан C2H6, бензол C6H6. Взаимодействие серы с «аморфным» У. и графитом начинается при 700—800 °С, с алмазом при 900—1000 °С; во всех случаях образуется сероуглерод CS2. Др. соединения У., содержащие серу (тиоокись CS, тионедоокись C3S2, сероокись COS и тиофосген CSCl2), получают косвенным путём. При взаимодействии CS2 с сульфидами металлов образуются тиокарбонаты — соли слабой тиоугольной кислоты. Взаимодействие У. с азотом с получением циана (CN)2 происходит при пропускании электрического разряда между угольными электродами в атмосфере азота. Среди азотсодержащих соединений У. важное практическое значение имеют цианистый водород HCN (см. Синильная кислота) и его многочисленные производные: цианиды, гало-генцианы, нитрилы и др. При температурах выше 1000 °С У. взаимодействует со многими металлами, давая карбиды. Все формы У. при нагревании восстанавливают окислы металлов с образованием свободных металлов (Zn, Cd, Cu, Pb и др.) или карбидов (CaC2, Mo2C, WO, TaC и др.). У. реагирует при температурах выше 600— 800 °С с водяным паром и углекислым газом (см. Газификация топлив). Отличительной особенностью графита является способность при умеренном нагревании до 300—400 °С взаимодействовать со щелочными металлами и галогенидами с образованием соединений включения типа C8Me, C24Me, C8X (где Х — галоген, Me — металл). Известны соединения включения графита с HNO3, H2SO4, FeCl3 и др. (например, бисульфат графита C24SO4H2). Все формы У. нерастворимы в обычных неорганических и органических растворителях, но растворяются в некоторых расплавленных металлах (например, Fe, Ni, Co).
Народнохозяйственное значение У. определяется тем, что свыше 90% всех первичных источников потребляемой в мире энергии приходится на органическое топливо, главенствующая роль которого сохранится и на ближайшие десятилетия, несмотря на интенсивное развитие ядерной энергетики. Только около 10% добываемого топлива используется в качестве сырья для основного органического синтеза и нефтехимического синтеза, для получения пластических масс и др.
О получении и применении У. и его соединений см. также Алмаз, Графит, Кокс, Сажа, Углеродистые огнеупоры, Углерода двуокись, Углерода окись, Карбонаты.
Б. А. Поповкин.
У. в организме. У. — важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически активные вещества — витамины, гормоны, медиаторы и др.). Значительная часть необходимой организмам энергии образуется в клетках за счёт окисления У. Возникновение жизни на Земле рассматривается в современной науке как сложный процесс эволюции углеродистых соединений (см. Происхождение жизни).
Уникальная роль У. в живой природе обусловлена его свойствами, которыми в совокупности не обладает ни один др. элемент периодической системы. Между атомами У., а также между У. и др. элементами образуются прочные химические связи, которые, однако, могут быть разорваны в сравнительно мягких физиологических условиях (эти связи могут быть одинарными, двойными и тройными). Способность У. образовывать 4 равнозначные валентные связи с др. атомами У. создаёт возможность для построения углеродных скелетов различных типов — линейных, разветвленных, циклических. Показательно, что всего три элемента — С, О и Н — составляют 98% общей массы живых организмов. Этим достигается определённая экономичность в живой природе: при практически безграничном структурном разнообразии углеродистых соединений небольшое число типов химических связей позволяет намного сократить количество ферментов, необходимых для расщепления и синтеза органических веществ. Особенности строения атома У. лежат в основе различных видов изомерии органических соединений (способность к оптической изомерии оказалась решающей в биохимической эволюции аминокислот, углеводов и некоторых алкалоидов).
Согласно общепринятой гипотезе А. И. Опарина, первые органические соединения на Земле имели абиогенное происхождение. Источниками У. служили метан (CH4) и цианистый водород (HCN), содержавшиеся в первичной атмосфере Земли. С возникновением жизни единственным источником неорганического У., за счёт которого образуется всё органическое вещество биосферы, является углерода двуокись (CO2), находящаяся в атмосфере, а также растворённая в природных водах в виде HCO-3. Наиболее мощный механизм усвоения (ассимиляции) У. (в форме CO2) — фотосинтез — осуществляется повсеместно зелёными растениями (ежегодно ассимилируется около 100 млрд. т CO2). На Земле существует и эволюционно более древний способ усвоения CO2 путём хемосинтеза; в этом случае микроорганизмы-хемосинтетики используют не лучистую энергию Солнца, а энергию окисления неорганических соединений. Большинство животных потребляют У. с пищей в виде уже готовых органических соединений. В зависимости от способа усвоения органических соединений принято различать автотрофные организмы и гетеротрофные организмы. Применение для биосинтеза белка и др. питательных веществ микроорганизмов, использующих в качестве единственного источника У. углеводороды нефти,— одна из важных современных научно-технических проблем.
Содержание У. в живых организмах в расчёте на сухое вещество составляет: 34,5—40% у водных растений и животных, 45,4—46,5% у наземных растений и животных и 54% у бактерий. В процессе жизнедеятельности организмов, в основном за счёт тканевого дыхания, происходит окислительный распад органических соединений с выделением во внешнюю среду CO2. У. выделяется также в составе более сложных конечных продуктов обмена веществ. После гибели животных и растений часть У. вновь превращается в CO2 в результате осуществляемых микроорганизмами процессов гниения. Таким образом происходит круговорот У. в природе (см. Круговорот веществ). Значительная часть У. минерализуется и образует залежи ископаемого У.: каменные угли, нефть, известняки и др. Помимо основные функции — источника У.— CO2, растворённая в природных водах и в биологических жидкостях, участвует в поддержании оптимальной для жизненных процессов кислотности среды. В составе CaCO3 У. образует наружный скелет многих беспозвоночных (например, раковины моллюсков), а также содержится в кораллах, яичной скорлупе птиц и др. Такие соединения У., как HCN, CO, CCl4, преобладавшие в первичной атмосфере Земли в добиологический период, в дальнейшем, в процессе биологической эволюции, превратились в сильные антиметаболиты обмена веществ.