Лит.: Егоров А. В., Моржин А. Ф., Электрические печи для производства сталей, М., 1975; Свенчанский А. Д., Электрические промышленные печи, 2 изд., ч. 1, М., 1975; История энергетической техники СССР, т. 2, М. — Л., 1957. с. 460—93; Paschkis V., Persson J., Industrial electric furnaces and appliances, 2 ed., N. Y. — L., 1960.

  А. В. Егоров, А. Ф. Моржин.

Электротермообработка

Электротермообрабо'тка, методы термической обработки металлов и их сплавов, при которых нагрев осуществляется электрическим током. Наибольшее распространение Э. (в отличие от пламенного нагрева) получила при поверхностной закалке в электролите и токами высокой частоты (ТВЧ). При закалке в электролите деталь помещают в ванну с электролитом; корпус ванны является анодом, деталь — катодом; при прохождении постоянного тока через электролит выделяется водород, который осаждается на поверхности детали, что приводит к повышению электрического сопротивления и, как результат, к нагреву изделия. После нагрева ток выключают, а деталь закаливают в самом электролите или в отдельном (закалочном) баке. Преимущества закалки в электролите — простота, возможность нагревать отдельные места детали, автоматизировать процесс. Недостатки — трудность регулирования температуры, низкая производительность, необходимость предохранения деталей от коррозии.

  Поверхностная закалка токами высокой частоты даёт возможность получить на изделии твёрдый поверхностный слой при мягкой и вязкой сердцевине. Закалка изделия ТВЧ осуществляется с помощью индукционного нагрева в индукционной нагревательной установке. В зависимости от формы, размеров деталей и предъявляемых к ним требований различают: одновременный, непрерывно-последовательный и последовательный способы закалки. Преимущества обработки ТВЧ: высокая производительность и экономичность, более высокая по сравнению с другими методами твёрдость закалённой поверхности, высокая скорость нагрева, отсутствие окалины, возможность точного регулирования глубины закалённого слоя и автоматизации процесса, улучшение условий труда и др.

  Н. А. Шемелёв.

Электротехника

Электроте'хника (от электро... и техника), отрасль науки и техники, связанная с применением электрических и магнитных явлений для преобразования энергии, получения и изменения химического состава веществ, производства и обработки материалов, передачи информации, охватывающая вопросы получения, преобразования и использования электрической энергии в практической деятельности человека.

  Историческая справка. Возникновению Э. предшествовал длительный период накопления знаний об электричестве и магнетизме, в течение которого были сделаны лишь отдельные попытки применения электричества в медицине, а также для передачи сигналов. В 17—18 вв. исследованию природы электрических явлений были посвящены труды М. В. Ломоносова. Т. В. Рихмана, Б. Франклина, Ш. О. Кулона, П. Дивиша и др. Для становления Э. решающее значение имело появление первого источника непрерывного тока — вольтова столба (А. Вольта, 1800), а затем более совершенных гальванических элементов, что позволило в 1-й трети 19 в. провести многочисленные исследования химических, тепловых, световых и магнитных явлений, вызываемых электрическим током (труды В. В. Петрова, X. К. Эрстеда, Д. Ф. Араго, М. Фарадея, Дж. Генри, А. М. Ампера, Г. С. Ома и др.). В этот период были заложены основы электродинамики, открыт важнейший закон электрической цепи — Ома закон. Среди попыток практического использования результатов этих достижений наиболее значительными были работы в телеграфии (электромагнитный телеграф П. Л. Шиллинга, 1832), в военном деле (гальваноударные морские мины Б. С. Якоби, 1840-е гг.), в области электрических измерений (индикатор электрического тока, т. н. мультипликатор, австрийского учёного И. К. Швейгера, 1820). Открытие электромагнитной индукции (1831—32) предопределило появление электрических машин двигателей и генераторов. Поскольку все первые потребители электроэнергии использовали постоянный ток (как наиболее изученный), первые электрические машины были постоянного тока машинами. Исторически электродвигатели стали создаваться раньше электромашинных генераторов, т. к. в 1-й трети 19 в. гальванические элементы как источники тока к большей или меньшей мере удовлетворяли требованиям практики. Период совершенствования конструкции электродвигателя — от лабораторных приборов, демонстрировавших возможность превращения электрической энергии в механическую (установка Фарадея, 1821), до машин промышленного типа — охватывает приблизительно 50 лет. В первых электродвигателях подвижная часть совершала возвратно-поступательное или качательное движение, а момент на валу двигателя был пульсирующим (например, в двигателе Генри). Начиная с середины 30-х гг. 19 в. стали строиться двигатели с вращающимся якорем. Таким электродвигателем, получившим практическое применение, был двигатель, разработанный Якоби (1834--38). Испытание этого двигателя, приводившего в движение «электрический бот», показало, с одной стороны, принципиальную возможность его практического применения, а с другой — необходимость создания более экономичного по сравнению с гальваническими элементами источника электроэнергии. Таким источником стал электромашинный генератор, прообразом которого была униполярная машина Фарадея (1831). Первыми практически пригодными электромашинными генераторами были магнитоэлектрические генераторы, в которых магнитное поле создавалось постоянными магнитами, а якорями служили массивные индуктивные катушки (Якоби, 1842). В 1851 немецкий учёный В. Зинстеден предложил заменить постоянные магниты электромагнитами, катушки которых питались от самостоятельных магнитоэлектрических генераторов. Дальнейшее совершенствование конструкции электромашинного генератора связано с использованием для возбуждения обмотки электромагнита тока самого генератора. Такие генераторы с самовозбуждением были предложены почти одновременно датским учёным С. Хиортом (1854), английскими инженерами К. и С. Варли (1867), Л. Йедликом, Ч. Уитстоном, Э. В. Сименсом. Промышленное производство генераторов было начато в 1870 в Париже после того, как З. Т. Грамм впервые применил в генераторе с самовозбуждением кольцевой шихтованный якорь, принципиальная конструкция которого была предложена для электродвигателя в 1860 А. Пачинотти. Генератор Грамма работал не только в генераторном, но и в двигательном режиме, что положило начало практическому внедрению принципа обратимости электрических машин (открытому Э. X. Ленцем, 1832—38) и позволило значительно расширить область использования электрических машин. Последующее совершенствование машин постоянного тока шло по пути улучшения их конструктивных элементов — замена кольцевого якоря барабанным (Ф. Хёфнер-Альтенек, 1873), усовершенствование шихтованных якорей (американский изобретатель Х. Максим, 1880), введение компенсационной обмотки (1884), дополнительных полюсов (1885) и др. К 80-м гг. 19 в. электрические машины постоянного тока приобрели основные конструктивные черты современных машин. Их совершенствованию способствовало открытие закона о направлении индукционных токов (см. Ленца правило), обнаружение и исследование противоэдс (Якоби, 1840) и реакции якоря (Ленц, 1847), разработка методов расчёта электрических цепей (Г. Р. Кирхгоф, 1847) и магнитных цепей (английский учёный Дж. Гопкинсон, нач. 80-х гг.), изучение магнитных свойств железа (А. Г. Столетов, 1871) и др. К концу 70-х гг. относятся работы Дж. К. Максвелла, сформулировавшего уравнения (см. Максвелла уравнения), являющиеся основой современного учения об электромагнитном поле.


Перейти на страницу:
Изменить размер шрифта: