Характерные черты Э. в. Среди других типов взаимодействий Э. в. занимает промежуточное положение как по «силе» и характерным временам протекания процессов, так и по числу законов сохранения. Отношение безразмерных параметров, пропорциональных квадратам констант сильного, электромагнитного, слабого и гравитационного взаимодействий и характеризующих «силу» взаимодействия протона с протоном при энергии ~ 1 Гэв в системе их центра масс, составляет по порядку величин 1:10-2:10-10:10-38. Характерные времена электромагнитных распадов элементарных частиц и возбуждённых состояний ядер (10-12—10-21 сек) значительно превосходят «ядерные» времена (10-22 —10-24 сек) и много меньше времён распадов, обусловленных слабым взаимодействием (103—10-11 сек). Помимо строгих законов сохранения, справедливых для всех типов взаимодействий (энергии, импульса, момента количества движения, электрического заряда и др.), при Э. в., в отличие от слабых взаимодействий, сохраняется пространств. чётность, зарядовая чётность и странность. С хорошей степенью точности установлено, что Э. в. инвариантно по отношению к обращению времени. Э. в. адронов нарушает присущие сильному взаимодействию законы сохранения изотопического спина и G-чётности, при этом изотопический спин адронов может измениться при испускании или поглощении фотона не более чем на 1 (см., например, Пи-мезоны). Унитарная симметрия адронов (SU (3)-симметрия; см. Элементарные частицы) приводит к определённым соотношениям между электромагнитными характеристиками (например, магнитными моментами) частиц, принадлежащих к одному и тому же унитарному мультиплету.

  Законы сохранения и свойства фотонов в значит, степени определяют специфические черты Э. в. Так, равенство нулю массы покоя фотона обусловливает дальнодействующий характер Э. в. между заряженными частицами, а его отрицательная зарядовая чётность — возможность радиационного распада абсолютно нейтральных частиц или связанных систем частиц [т. е. частиц (систем), тождественных своим античастицам], обладающих положит. зарядовой чётностью, — p-мезона, парапозитрония (см. Позитроний) лишь на чётное число фотонов. Возможность описания (в соответствующем пределе) Э. в. в рамках классической (а не только квантовой) физики и его макроскопические проявления обусловлены дальнодействующим характером Э. в. и тем, что фотоны подчиняются Бозе — Эйнштейна статистике. Малая величина се определяет малость сечений электромагнитных процессов с участием адронов по сравнению с сечениями аналогичных процессов, протекающих за счёт сильных взаимодействий; например, сечение рассеяния фотона с энергией 320 Мэв на протоне составляет около 2×10-30 см2, что примерно в 105 раз меньше сечения рассеяния p+-мезона на протоне при соответствующей полной энергии сталкивающихся частиц в системе их центра масс.

  Тот факт, что электрический заряд определяет «силу» взаимодействия и в то же время является сохраняющейся величиной — уникальное свойство Э. в.; вследствие этого Э. в. зависят только от электрического заряда частиц и не зависят от типа частиц или электромагнитных процессов. При описании электромагнитного поля 4-мерным вектором-потенциалом Аm(m=®0,1,2,3) [А (j, А), А — векторный, j — скалярный потенциалы] плотность лагранжиана L Э. в. поля с зарядом записывается в виде скалярного произведения:

Большая Советская Энциклопедия (ЭЛ) i-images-194178726.png
,

где: jm — 4-мерный вектор плотности электрического тока: j = (cr, j), j — плотность тока, r — плотность заряда. При градиентном преобразовании вектор-потенциала, которое называется также калибровочным преобразованием (2-го рода):

А ® А + grad f (х, t),

Большая Советская Энциклопедия (ЭЛ) i-images-115908061.png
,

где jm (x, t) произвольная функция координат х и времени t, наблюдаемые физические величины (напряжённости полей, вероятности электромагнитных процессов и т. п.) остаются неизменными. Это свойство, специфическое для Э. в., получило название принципа калибровочной инвариантности — одного из принципов симметрии в природе (см. Симметрии в физике), выражающего в наиболее общей форме факт существования электромагнитного поля (фотона) и Э. в. Обобщение калибровочной инвариантности на слабые взаимодействия позволило сформулировать единую теорию слабых и электромагнитных взаимодействий лептонов (см. Слабые взаимодействия).

  Эффекты квантовой электродинамики. К ним относятся рассеяние фотонов на электронах (Комптона эффект), тормозное излучение, фоторождение пар е+е- или m+m- на кулоновском поле ядер, сдвиг уровней энергии атомов из-за поляризации электрон-позитронного вакуума (см. Вакуум физический) и другие эффекты, в которых можно пренебречь структурой заряда (его отличием от точечности) при взаимодействии с ним электромагнитного поля. Развитая для описания атомных явлений квантовая электродинамика оказалась справедливой для значительно меньших, чем атомные, расстояний. Изучение рассеяния электронов друг на друге и аннигиляции е+- ® m++m- при больших энергиях сталкивающихся частиц (до ~ 6 Гэв в системе центра масс), фоторождения пар е+-, m++m- с большими относительными импульсами, а также прецизионные измерения уровней энергии электронов в атомах и аномальных магнитных моментов электрона и мюона установили справедливость квантовой электродинамики вплоть до очень малых расстояний: ~ 10-15 см. Её предсказания с высокой степенью точности согласуются с экспериментальными данными. Так, не найдено расхождения между теоретическим и экспериментальным значениями магнитного момента мюона на уровне 10-7%.

  Характерной чертой электродинамических процессов при высоких энергиях Е (Е >> mc2, где m — масса электрона или мюона) является острая направленность вперёд угловых распределений частиц (g, е±, m±) продуктов процессов: бо'льшая их часть вылетает в пределах угла J £ mc2/E относительно направления налетающих частиц.

  Основной вычислительный метод квантовой электродинамики — теория возмущений: благодаря слабости Э. в. матрицу рассеяния процессов с участием электромагнитного поля можно разложить в ряд по степеням малого параметра a и при вычислениях ограничиться рассмотрением небольшого числа первых членов этого ряда (обычно не более четырёх).

  В диаграммной технике теории возмущений (см. Фейнмана диаграммы) простейший процесс квантовой электродинамики — взаимодействие фотона с бесструктурной (точечной) заряженной частицей входит как составной элемент в любой электродинамический процесс. Из-за малости a процессы с участием большого числа таких взаимодействий менее вероятны. Однако они доступны наблюдению и проявляются в т. н. радиационных поправках, в эффектах поляризации электрон-позитронного вакуума, в многофотонных процессах. В частности, поляризация вакуума приводит к рассеянию света на свете (рис. 1, а) эффекту, который отсутствует в классической электродинамике; этот эффект наблюдается при рассеянии фотонов на кулоновском поле тяжёлого ядра (рис. 1, б).


Перейти на страницу:
Изменить размер шрифта: