Эрланга

Эрла'нга, Аирланга (1001—1049), махараджа средневекового государства Матарам на Яве. Вступил на престол Матарама в 1019. В 1022 унаследовал от отца о. Вали, к 1037 объединил большую часть Восточной и значительную часть Центральной Явы. В историю Индонезии вошёл как «собиратель яванских земель». Э. был светским и духовным главой государства. При нём Матарам стал господствующей силой в центральных и восточных районах архипелага, тогда как в западных районах по-прежнему господствовала Шривиджайя. Союз между двумя государствами был закреплен (1035) браком Э. с принцессой из Шривиджайи (ставшей его 2-й женой). Э. содействовал развитию земледелия и торговли, поощрял литературу и искусства. Покровительствовал индуизму. Незадолго до смерти Э. разделил государство между побочными сыновьями (детей от обеих законных жён у него не было) на Джангалу и Панджалу (Кедири). после чего удалился в уединённую обитель и стал аскетом.

Эрланга формулы

Э'рланга фо'рмулы, формулы массового обслуживания теории, выражающие стационарную вероятность отказа для систем с потерями. Получены датским инженером А. К. Эрлангом (А. К. Eriang, 20-е гг. 20 в.) при решении проблем, связанных с перегрузкой телефонных линий.

Эрланген

Э'рланген (Eriangen), город в ФРГ, в земле Бавария, на р. Регниц и Людвигс-канале. 100,7 тыс. жителей (1976). Входит в промышленный «треугольник» Нюрнберг—Фюрт—Э. Электротехническая и радиоэлектронная (концерн «Сименс») промышленность, производство станков, электровозов, хлопчатобумажных изделий и бумаги. Университет (с 1743; в 1961 объединён с Нюрнбергской высшей экономической школой).

Эрлангенская программа

Эрла'нгенская програ'мма, единая точка зрения на различные геометрии (например, евклидову, аффинную, проективную), сформулированная впервые Ф. Клейном на лекции, прочитанной в 1872 в университете г. Эрланген (Германия) и напечатанной в том же году под названием «Сравнительное обозрение новейших геометрических исследований».

  Сущность Э. п. состоит в следующем. Как известно, евклидова геометрия рассматривает те свойства фигур, которые не меняются при движениях; равные фигуры определяются как фигуры, которые можно перевести одну в другую движением. Но вместо движений можно выбрать какую-нибудь иную совокупность геометрических преобразований и объявить «равными» фигуры, получающиеся одна из другой с помощью преобразований этой совокупности; при этом придём к иной «геометрии», изучающей свойства фигур, не меняющиеся при рассматриваемых преобразованиях. Введённое «равенство» должно удовлетворять следующим трём естественным условиям: 1) каждая фигура F «равна» сама себе, 2) если фигура F «равна» фигуре F' то и F' «равна» F, 3) если фигура F «равна» F' а F' «равна» F'', то и F «равна» F''. Соответственно этому приходится накладывать на совокупность преобразований следующие три требования: 1) в совокупность должно входить тождественное преобразование, оставляющее всякую фигуру на месте, 2) наряду с каждым преобразованием П, переводящим фигуру F в F' в совокупность должно входить «обратное» преобразование П-1 переводящее F' в F, 3) вместе с двумя преобразованиями П1 и П2, переводящими соответственно F в F' и F' в F'', в совокупность должно входить произведение П2П1 этих преобразований, переводящее F в F''2П1) состоит в том, что сначала производится П1, а затем П2). Требования 1), 2) и 3) означают, что рассматриваемая совокупность является группой преобразований (см. Непрерывная группа). Теория, которая изучает свойства фигур, сохраняющиеся при всех преобразованиях данной группы, называется геометрией этой группы.

  Выбирая по-разному группу преобразований, получим разные геометрии. Так, принимая за основу группу движений, мы придём к обычной (евклидовой) геометрии; заменяя движения аффинными преобразованиями или проективными преобразованиями, придем к аффинной, соответственно, проективной геометрии. Основываясь на идеях А. Кэли, Клейн показал, что принятие за основу группы проективных преобразований, переводящих в себя некоторый круг (или произвольное коническое сечение), приводит к неевклидовой геометрии Лобачевского (см. Лобачевского геометрия). Клейн ввёл в рассмотрение довольно широкий круг других геометрий, определяемых подобным же образом.

  Э. п. не охватывает некоторых важных разделов геометрии, например риманову геометрию. Однако Э. п. имела для дальнейшего развития геометрии существенное стимулирующее значение. Важные работы, ставящие своей целью объединить теоретико-групповой и дифференциально-геометрический подход к геометрии, принадлежат Я. Схоутену и Э. Картану.

  Лит.: Клейн Ф., Сравнительное обозрение новейших геометрических исследований («Эрлангенская программа»), в кн.: Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию ее идей, М., 1956; его же, Элементарная математика с точки зрения высшей, пер. с нем., 2 изд., т. 2, М. — Л., 1934; его же, Высшая геометрия, пер. с нем., М. —- Л., 1939; Александров П. С., Что такое неэвклидова геометрия, М., 1950; Ефимов Н. В., Высшая геометрия, 5 изд., М., 1971.

Эрлангер Джозеф

Эрла'нгер (Erlanger) Джозеф (5.1.1874, Сан-Франциско,— 5.12.1965, Сент-Луис, штат Миссури), американский физиолог, один из основоположников электрофизиологии. Член Национальной АН США. Окончил Калифорнийский университет (1895). Работал в университете Джонса Хопкинса (1900—06), в 1906—10 профессор, руководитель отделения физиологии университета в штате Висконсин, в 1910—46 профессор и руководитель отделения физиологии университета Вашингтона в Сент-Луисе (Миссури). Основные труды по изучению биоэлектрических явлений в нервных клетках и волокнах. Первым использовал катодный осциллограф и разработал оригинальные методы для их регистрации. Внёс крупный вклад в сердечно-сосудистую физиологию, применив бескровных методы регистрации артериального давления и циркуляции крови в сердце. Исследовал природу блокады сердца. Нобелевская премия (1944, совместно с Г. Гассером).

  Соч.: Symposium on the synapse. Bait., 1939 (совм. с др.); Electrical signs of nervous activity, Phil. — L. — Oxf., 1937 (совм. с H. S. Gasser).


Перейти на страницу:
Изменить размер шрифта: