— В рамках NLC, — продолжает Давид, — мы накапливаем знания о мире. Система знает, что стул — это мебель, мебель находится в доме, знает, для чего предназначен стул. Мы построили модель языково-независимых данных об устройстве мира и модель доступа к этим данным, благодаря чему можем решать, как я уже говорил, широкий пласт задач.
Естественно, первое, что приходит в голову с таким подходом, — это перевод.
— Нетрудно понять, что человек-переводчик в процессе перевода сначала понимает смысл исходного предложения, а затем синтезирует этот смысл на другом языке. Только так можно получить адекватный перевод. Если же Google будет применять какие угодно эвристики, переводить по частям, используя пословный или пофразовый перевод, то неизбежно будет теряться смысл.
Конечно, кое-что можно понять уже на уровне синтаксического анализа. Например, синтаксический анализ зачастую позволяет разобраться с омонимией, когда одно и то же слово может означать разные вещи. Возьмем, допустим, слово «copy» — оно может быть как существительным («копия»), так и глаголом («копировать»). Но синтаксический анализ предложения I will copy this book показывает, что в данном случае «copy» — это глагол. Проблема в том, что синтаксис даже в таких, относительно простых случаях работает не всегда. Омонимию «за,мок»-"замо,к" синтаксически разрешить невозможно. «Я буду жить в этом замке» или «я повесил этот замок». Здесь уже нужен семантический анализ.
Выглядит все очень здорово, но, кажется, похожую функциональность обещали и экспертные системы, дайте-ка вспомнить, двадцать, тридцать, сорок лет назад?
— Если говорить о других подходах, то можно вспомнить не только экспертные системы, но и нейрокомпьютеры, которые, вообще говоря, к системам ИИ можно отнести с большой натяжкой, формально они к ним не относятся, это в большей степени статистические модели. Что касается экспертных систем, то в этой области масса различных реализаций. Если говорить о «черном ящике», то наша технология может имитировать поведение экспертной системы, если конечному пользователю так проще. Он сможет задавать вопросы и получать ответы. Но ключевым отличием NLC является то, что у нас целостный подход, мы строим целостное представление о мире. Экспертные системы никогда не ставили себе целью построение всеобъемлющей модели, да и не могли поставить такую цель.
Что это означает? Мы применяем так называемый IPA-подход — Integrity, Purposefulness and Adaptability, целостное, целенаправленное адаптивное восприятие. Этот принцип лежит в основе FineReader, NLC и ряда других систем ИИ, которыми мы занимаемся. Отдельные его принципы существовали и до нас, но наиболее цельно сформулировал этот подход наш главный идеолог по этому направлению Александр Львович Шамис, так что мы считаем, что принцип IPA изобретен нами. И этот принцип работает — сегодня FineReader умеет, например, распознавать рукописные шрифты без настройки на почерк.
В двух словах о том, что это такое. Во-первых, принцип целостности постулирует, что мы храним знания о мире целостным образом. Любые знания являются частью целого. Если говорить о распознавании текстов, то любая буква может быть представлена как система элементов, связанных друг с другом определенным образом. Если говорить о структуре языка, то здесь мы видим систему понятий, которые логически связаны друг с другом.
Принцип целенаправленности говорит о том, что мы не пытаемся исходить из того, что видим или анализируем. Мы поступаем ровно наоборот — априори высказываем гипотезу и пытаемся ее проверить. Наша система изначально является активным субъектом данного акта взаимодействия. Она не просто воспринимает данные на входе, но, получив объект для восприятия, пытается угадать, что это такое, или опровергнуть выдвинутую гипотезу. Причем это система с обратной связью — позитивные или негативные результаты запоминаются, система адаптируется и самообучается.
Представьте, что вы вошли в чулан. Темнота. Света практически нет, только какой-то слабый лучик пробивается. Вы почти ничего не видите, но чувствуете, что слева от вас что-то прошмыгнуло, проскочил движущийся объект. Через доли секунды вы уже знаете точно, что это была кошка. Как это произошло? Как вы догадались, ведь вы ее не видели?
Традиционная система распознавания взяла бы ту явно недостаточную графическую информацию, попыталась бы сделать на ее основании какие-то выводы — и у нее, конечно, ничего не получилось бы, потому что кошки не было, вы не видели ее. Но человек действует иначе. Сам не осознавая этого, он выдвигает гипотезы (как ограничивается круг возможных гипотез, это отдельный большой вопрос). Возможно, это собака, думает человек. Но если это собака, то тень должна была быть крупнее. Кроме того, собака должна издавать соответствующие звуки. Значит, эта гипотеза неверна. Переходим к следующей. Возможно, это мышь? Тоже нет, не подходит по размерам. А если это кошка? Кошка подходит. Это кошка!
Но для выдвижения последней гипотезы у человека должны быть определенные знания о кошке. Он должен знать, что у кошки четыре ноги, хвост. Он должен знать, что кошка мяукает. И он начинает спрашивать себя, был ли у этой предположительной кошки хвост? Ног человек не видел, но хвост видел. Звук она издавала такой, какой издает кошка? Да, такой. Значит, из всех гипотез наибольший вес имела гипотеза, связанная с кошкой, и теперь мы убеждены, что эта гипотеза верна. И когда мы в следующий раз столкнемся с подобной ситуацией, первой нашей догадкой будет «кошка».
Именно этот подход используют живые системы в процессе восприятия: дети, животные, люди и так далее. Мы его достаточно успешно применили в FineReader, но он имеет настолько общий характер, что мы применяем его для анализа естественных языковых предложений, в процессе извлечения смысла. Мы проводим (начинает загибать пальцы) лексический, морфологический, синтаксический, семантический, то есть полную цепочку анализа естественного языкового массива.
А каким образом достраивается внутренняя модель знаний о мире? Все эти знания вводятся…
— …экспертами. Да, у нас большой объем ручной работы. Правда, часть нам удалось автоматизировать; к счастью, есть методы, позволяющие снизить нагрузку на экспертов. Но рассказывать об этом я пока не могу.
Конечные пользователи и сами смогут дообучать систему. Продукты такого рода должны быть модифицируемы и самообучаемы — иначе они теряют смысл. Как конкретно это реализовано — тоже говорить еще рано.
Не может ли случиться так, что в результате ошибочно заложенных знаний стандартом станет какое-нибудь неверное представление?
— Ну, это общая проблема человечества. Это и сейчас происходит. Возьмите Википедию, один человек ошибся, тысяча человек поставила ссылку. Это жизнь. В словаре Ожегова упоминается, что правильно говорить «фо,льга». А все говорят «фольга,». Это, конечно, проблема, но она общего характера и к нашей системе прямого отношения не имеет.
А для написания программ вашу систему можно применять? Это ведь во многом более простая задача, чем обработка естественного языка.
— В каком-то смысле, да. Есть определенная грамматика, есть смысл и нужно синтезировать этот смысл в правилах заданной грамматики. Сходство имеется, но до конкретной реализации, думаю, еще далеко. Это все равно что сравнить распознавание букв и распознавание отпечатков пальцев. Базовые принципы и там и там одни и те же, но конкретика совершенно разная, разные модели знаний о предмете и т. д. Наш подход может быть применен для построения подобных систем, но это будет совершенно независимый продукт.
Отчаявшись получить хоть какой-то намек, на что будет похож первый продукт на базе NLC, мы пробуем подойти к вопросу с другой стороны.
Какие задачи подтолкнули к созданию этой системы?
— Падение Вавилонской башни.
То есть все же лингвистические?