Венгерские ученые пошли по другому пути. Они создали особые пластмассы, обладающие необычайно высокими диэлектрической проницаемостью и пробойным напряжением. Кроме того, они выяснили, что самая высокая в природе диэлектрическая проницаемость – 130000 единиц! – у дезоксирибонуклеиновой кислоты, той самой ДНК, которая несет генетическую информацию. Если обычный конденсатор емкостью 10 микрофарад заполнить в качестве электролита ДНК, то при напряжении 300 вольт плотность его энергии будет порядка 20...200 килоджоулей на килограмм. Этот показатель лучше, чем таковой у газовых аккумуляторов.

Тут мне пришло в голову, что если объединить открытия японских и венгерских ученых, то есть пропитать активный уголь дезоксирибонуклеиновой кислотой, удельная энергия конденсатора, судя по всему, выросла бы еще раз в сто. Тогда масса «энергетической капсулы», необходимой автомобилю для прохождения ста километров, могла бы быть не более одного-двух килограммов!

Да, заманчиво, конечно, все это осуществить, но... Где достать столько ДНК? Как пропитать ДНК активный уголь? Насколько дорог будет такой конденсатор, если его все же удастся получить? Какова будет сила взрыва, если произойдет внезапный пробой?

Я затруднялся найти ответ на первые вопросы, однако ответ на последний отчетливо представлял себе. Дело в том, что однажды я был страшно перепуган оглушительным взрывом телевизионного конденсатора, энергия которого была в десятки тысяч раз меньше...

И еще меня огорчало одно обстоятельство. «Перестраховщики» ученые, зная почти все про конденсаторы, определили теоретический предел плотности его энергии в 3,6 килоджоуля на килограмм. А это в тысячи раз ниже плотности энергии, вычисленной мной. Кто-то из нас очень ошибался в своих прогнозах, и я, кажется, догадывался, кто...

«Капсулу» – в жидкий гелий

Нет, не получилось из конденсатора «энергетической капсулы». Ну ничего, ведь электричество можно накопить не только в виде неподвижного, статического заряда – при движении электронов по проводу обмотки электромагнита оно тоже накапливается.

Мне очень хорошо запомнился школьный опыт по физике, где мы подключали к батарее лампочку параллельно с электромагнитом. Лампочка загоралась не сразу, медленно раскалялся ее волосок, но при отключении батареи лампочка, вместо того чтобы погаснуть, вспыхивала еще ярче. Какая же энергия, если не накопленная в электромагните, раскаляла волосок лампочки в то время, как питание от батареи больше не поступало? И накапливалась эта энергия в магнитном поле тогда, когда, несмотря на то, что энергия отбиралась от батареи, лампочка горела тускло. Ей явно не хватало мощности батареи – львиная доля мощности шла на насыщение энергией электромагнита.

Итак, очередной аккумулятор, может быть, даже кандидат на «энергетическую капсулу». Проверим, на что способен электромагнит как накопитель.

Я попробовал «подпитывать» электромагнит током от аккумуляторных батарей, постепенно увеличивая их число. Соответственно повышалось напряжение на клеммах электромагнита, увеличивался ток, а следовательно, росла и подъемная сила электромагнита. В его магнитном поле накапливалась все большая и большая энергия. Так, наверное, продолжалось бы и дальше, но... от электромагнита вдруг пошел дым – он перегрелся от чрезмерного тока. Опыт пришлось прекратить. Вот, значит, где предел энергоемкости электромагнита!

Оказалось, что и со сроком хранения энергии плоховато – держится накопленная энергия в электромагните, или, как говорят, в катушке индуктивности, доли секунды. Из-за сопротивления в проводнике – проволоке, намотанной на сердечник электромагнита, вся накопленная в его магнитном поле энергия быстро переходит в тепло. А нельзя ли устранить это сопротивление?

Мне не хотелось идти в библиотеку, однако я пересилил себя. Зато потом в читальном зале я просидел до самого закрытия и нашел не только ответ на свой вопрос, но и множество других полезных для меня сведений.

Еще в 1911 году голландский физик Камерлинг-Оннес обнаружил, что столбик ртути, охлажденный до температуры, превышающей абсолютный нуль на 4,2 градуса, полностью теряет свое электрическое сопротивление. Причем резко, скачком. Так же, как и ртуть, теряли сопротивление свинец, алюминий, олово, цинк и ряд других металлов. Явление это было названо сверхпроводимостью. В кольце из такого сверхпроводника ток мог «крутиться» сколько угодно времени, сохраняя энергию магнитного поля. Беда лишь в том, что даже при небольшом возрастании тока или внешних магнитных полей перечисленные металлы утрачивали свойство сверхпроводимости.

В течение полувека эти сверхпроводники, названные сверхпроводниками первого рода, практического применения не имели. Но в 1961 году советские ученые предсказали возможность создания более совершенных сверхпроводников второго рода, а американские специалисты испытали такой сверхпроводник – проволоку из сплава металла ниобия с оловом, а затем ниобия с титаном. Через проволоку пропускали громадные токи, вокруг нее создавали гигантские магнитные поля, и ничего ей не делалось, свойство сверхпроводимости оставалось.

В кольце из сверхпроводника второго рода можно запасать и хранить без потерь очень большую энергию, примерно в 7 раз больше, чем в такой же по объему конденсаторной батарее. Конечно, кольцо это держат не при комнатной температуре, его помещают в специальный термос для хранения холодных жидкостей – криостат. В криостат заливают жидкий гелий при температурах, близких к абсолютному нулю. Чтобы жидкий гелий испарялся не слишком сильно, его окружают так называемым азотным экраном. Азотный экран – это слой жидкого азота поверх сосуда с жидким гелием. Испаряясь, жидкий азот уменьшает испарение более холодного и дорогого гелия.

Одна из первых моделей такого накопителя была испытана в 1970 году. В сверхпроводящем «электромагните» – соленоиде была накоплена энергия в 10 килоджоулей. Плотность энергии накопителя составила около 40 килоджоулей на килограмм массы.

До какого же предела можно «накачивать» энергию в сверхпроводящий магнит? Оказывается, этот предел диктует не что иное, как... механическая прочность.

Вот уж чего я не ожидал! Коварство сверхпроводящего кольца с током заключается в том, что магнитное поле, развиваемое им, воздействует прежде всего на само кольцо. Как в электромоторе магнитное поле, действуя на обмотки, вращает вал, так и в сверхпроводящем кольце магнитные силы пытаются разорвать его. А поскольку магнитные поля и токи здесь громадны, то силы, разрывающие кольцо, очень велики. Сплавы же ниобия, из которых изготовлена проволока для кольца, увы, совсем не прочны. Куда им до стальных или синтетических материалов! Эта недостаточная механическая прочность и является досадной причиной, сдерживающей «накачку» сверхпроводника током, а значит, и получение высокой плотности энергии.

Ученые в своих проектах отдают предпочтение гигантским сверхпроводящим накопителям. И у них есть на то веские основания. Известно, что площадь тела пропорциональна квадрату его размеров, объем – кубу. С увеличением размеров увеличивается отношение объема к площади поверхности. Для сверхпроводящих накопителей это имеет немаловажное значение. От объема криостата зависит величина обмотки накопителя и, следовательно, количество запасаемой энергии, а от площади – интенсивность испарения содержащихся в нем жидких холодных газов – гелия, азота. Чем больше объем и меньше поверхность криостата, тем экономичнее накопитель.


Перейти на страницу:
Изменить размер шрифта: