Тайны памяти (с илл.) p024_2.png

Путь к сказочному Эльдорадо был нелегок. Здесь европейцам пришлось всерьез столкнуться со страшным оружием индейцев – отравленными стрелами. Самой крохотной царапины оказывалось достаточно, чтобы убить человека или лошадь. Закутанные для защиты от стрел в ватные халаты, изнывая от жары, все время опасаясь засады, брели конкистадоры навстречу своему богатству и своей гибели.

Стрельный яд, который использовали индейцы, называется кураре. Его получали из коры, корней и молодых побегов тропических растений. Размельченные части растений вымачивали в воде. Затем настой выпаривали до образования густого сиропа. Им и смазывали наконечники стрел. Через некоторое время сироп твердел. Действие яда сказывалось быстро. Сначала наступал паралич шейной мускулатуры, потом отказывали конечности. Несколькими минутами позже очередь доходила до дыхательной мускулатуры, и… наступала смерть от удушья.

Когда кураре попал в Европу, его попробовали приспособить для медицинских целей. Иногда врачу крайне необходимо расслабить мускулатуру тела больного или прекратить судороги. Однако новое лекарство не привилось. Не удавалось подобрать безопасную и в то же время эффективную дозировку.

В те времена не было достаточно четких представлений о механизме действия кураре. Выдающийся французский физиолог К. Бернар обратил внимание на то, что у животных, убитых кураре, уже через минуту после смерти нервы перестают реагировать на химические, механические и электрические раздражения. (Обычно мышца, отсеченная вместе с двигательным нервом, длительное время способна отвечать сокращением на его раздражение.) Изучив это странное явление, Бернар установил, что кураре не нарушает способности самой мышцы сокращаться, а нерва – проводить возбуждение. Это значит, что и нерв и мышца не затронуты действием яда, нарушен только переход возбуждения с нерва на мышцы.

Эксперименты заставили задуматься над механизмом передачи возбуждения от одной клетки к другой. Наиболее вероятной казалась электрическая связь. Распространение возбуждения по нерву сопровождается возникновением электрического разряда, а электрическое раздражение способно вызвать сокращение мышцы. Теперь мы знаем, что природа использовала этот путь на ранних этапах эволюции. До сих пор у ракообразных и других примитивных животных в организме действуют достаточно совершенные электростимуляторы. Уже во времена К. Бернара подозревали, что у высших животных язык, на котором нерв «разговаривает» с мышцей, передавая ей свои приказы, «химический». Прошло почти 50 лет, прежде чем австриец О. Леви сумел окончательно подтвердить это предположение.

Сердце сокращается само по себе, без специальных команд. Леви изучал у лягушки нервы, замедляющие сердечный ритм. После долгих и кропотливых экспериментов ему удалось перехватить их депеши. Приказы передавались с помощью особого вещества – ацетилхолина. Разрушая его, другое вещество – фермент ацетилхолинэстераза – уничтожает распоряжения. Удалось найти вещество, способное расщепить и саму ацетилхолинэстеразу. Химический способ передачи возбуждения был доказан. Вскоре удалось убедиться, что химический язык универсален. На нем «беседуют» между собой нервные клетки. Вещества, с помощью, которых «пишутся» распоряжения (какое бы химическое строение они ни имели), называют медиаторами, что в переводе на русский язык означает «посредники».

Двери

Работа мозга возможна лишь при контактах между его многочисленными клетками. Средств общения нейронов немного. У них могут быть контакты между двумя аксонами, двумя дендритами и телами клеток, аксодендрические (аксон – дендрит), аксосоматические (аксон – тело клетки) и дендросоматические (дендрит – тело клетки). Всего шесть возможностей, и все шесть используются, хотя основных типов два: между аксоном одной клетки и телом или дендритами второй. На заре возникновения нервной системы преобладал первый тип. Он и сейчас преобладает у примитивных животных.

Аксодендрические контакты имеют существенные преимущества. На поверхности клетки может разместиться относительно немного нервных окончаний. Другое дело дендриты, их разветвления значительно увеличивают поверхность клетки и расширяют возможность клеточных контактов. Имея достаточно большую протяженность, они как бы сами идут навстречу аксонам, подыскивая для себя источники информации.

Может показаться удивительным, что клетки, участвуя в очень важных, чрезвычайно сложных функциях, сами располагают незначительной информацией, передавая команды, а еще чаще просто советы о том, что соседним клеткам следует возбудиться или, наоборот, прервать свою деятельность.

Трудность передачи информации в том, что каждая нервная клетка, одетая в собственную оболочку, окруженная глиальными клетками и закутанная слоями миелина, – это маленькое самостоятельное государство. Какие бы революции его ни сотрясали, какие бы катаклизмы ни происходили, сор из избы не будет вынесен, все останется внутри клетки.

Для обмена информацией необходимы специальные устройства. В конце прошлого столетия глава английских физиологов Шеррингтон назвал места тесного контакта отростков нервных клеток синапсами, что в переводе с греческого означает «смыкать». В то время Шеррингтону еще не было известно, что нервные клетки обмениваются «письменными» приказами. Тесный контакт наилучшим образом объяснял, как возбуждение переползает с одного нейрона на другой.

Теперь мы точно знаем, что настоящего контакта нет.

Между соприкасающимися волокнами всегда остается заметная щель. Синапсы – это те места, где нервные клетки имеют двери, через которые и происходит обмен информацией.

Нервные клетки эмбрионов дверей еще не имеют. Они появляются позже, когда отростки нейронов, разрастаясь внутри черепной коробки, сталкиваются друг с другом. В местах соприкосновений каждая из контактирующих клеток прорубает дверной проем. Теперь не нужно «далеко ходить», чтобы обменяться новостями. Казалось бы, обмен информацией налажен. Увы, все гораздо сложнее: соседи держат свои двери на запоре. Они боятся утечки информации и не желают попадать под чужое влияние.

Нужно честно сказать, что настоящих дверей, то есть дырок в клеточной мембране, ни у одной из нервных клеток нет: мембрана как мембрана, но в ней существуют поры, способные пропускать медиаторы. Хранятся они в крохотных, порядка 200–600 ангстрем, синаптических пузырьках, располагаясь вблизи дверей одной из двух соседних клеток.

Возбуждение любой нервной клетки, любого ее отростка обязательно сопровождается возникновением электрических потенциалов. Казалось бы, все очень просто, электричество – отличный раздражитель, и для передачи возбуждения с одной нервной клетки на другую ничего специально придумывать не нужно. Однако мозг не способен варьировать напряжение электрического тока. Нервная клетка работает по закону «все или ничего», то есть или «молчит», или дает стандартный импульс.

Там, где возбуждение обязательно должно передаваться от клетки к клетке, этот принцип можно было бы применить. В мозгу гораздо чаще ситуация такова, что нервная клетка вовсе не обязана тотчас возбуждаться, если соседка ей в дверь покричит, что возбуждена до предела. Конечно, добропорядочная нервная клетка всегда прислушается к соседям. Если слухи серьезные, соседи со всех сторон сообщают, что они находятся в состоянии возбуждения, клетка-адресат возбуждается.

Иными словами, нервная клетка возбуждается только в том случае, если адресованная ей информация получит достаточно убедительное подкрепление.

Тайны памяти (с илл.) p026_1.png

В этом и состоит работа нервных клеток: постоянно взвешивать получаемую от корреспондентов информацию и решать, достаточно ли она основательна. Вот почему нервные клетки высших животных обмениваются между собой химическими посланиями, которые легко дозировать. Когда клетка-корреспондент возбуждена, медиатор из синаптических пузырьков выделяется в синаптическую щель, пространство между двумя клетками.


Перейти на страницу:
Изменить размер шрифта: