Несовместимые понятия могут быть в отношениях соподчинения, противоположности и противоречия.

Понятия находятся в отношении соподчинения тогда, когда их объёмы не имеют общих элементов, но в то же время входят в объём какого-то третьего понятия, родового для них (совместно ему подчиняются). Например, понятия «сосна» (С) и «берёза» (Б) являются соподчинёнными: ни одна сосна не может быть берёзой, и наоборот, но и множество всех сосен, и множество всех берёз включается в более широкий объём понятия «дерево» (Д). На схеме Эйлера отношение соподчинения изображается двумя несоприкасающимися кругами (рис. 4).

Краткий курс логики: Искусство правильного мышления _04.png

Понятия находятся в отношении противоположности в том случае, если они обозначают какие-то взаимоисключающие признаки, крайние состояния чего-либо, между которыми, однако, всегда есть некий средний, переходный вариант. Например, противоположными являются понятия «высокий человек» (В. ч.) и «низкий человек» (Н. ч.) Третьим (переходным) вариантом между ними будет понятие «человек среднего роста». На схеме Эйлера отношение противоположности изображается двумя несоприкасающимися кругами, которые находятся как бы на разных полюсах (рис. 5).

Краткий курс логики: Искусство правильного мышления _05.png

Поскольку объёмы противоположных понятий не соприкасаются, это отношение отчасти похоже на соподчинение. Однако понятия, находящиеся в отношении соподчинения, обозначают просто различные объекты разных видов и одного рода, но не противоположные друг другу. Не можем же мы утверждать, что сосна является противоположностью берёзы, а берёза – противоположностью сосны: это просто разные деревья, и не более того. В то же время высокий человек представляет собой противоположность низкого человека и наоборот. Так же противоположными будут понятия «тёмная комната» и «светлая комната», «горячая вода» и «холодная вода», «белый лист» и «чёрный лист», «глубокая речка» и «мелкая речка» и т. п.

Понятия находятся в отношении противоречия, если одно из них представляет собой отрицание другого, причём в отличие от противоположных понятий, между противоречащими понятиями не может быть третьего (среднего) варианта. Например, в отношении противоречия находятся понятия «высокий человек» (В. ч.) и «невысокий человек» (Нв. ч.). В том случае, когда одно понятие является отрицанием другого, третий вариант автоматически исключается: и низкий человек, и человек среднего роста – это невысокий человек. На схеме Эйлера отношение противоречия изображается одним кругом, поделённым на две части, которые обозначают противоречащие понятия (рис. 6).

Краткий курс логики: Искусство правильного мышления _06.png

Отношениями соподчинения, противоположности и противоречия исчерпываются все случаи несовместимости между понятиями.

Итак, в логике выделяется шесть вариантов отношений между понятиями. Для удобства их запоминания они представлены в табл. 2.

Краткий курс логики: Искусство правильного мышления table_02.png

Любые два сравнимых понятия обязательно находятся в одном из шести указанных случаев отношений. Например, понятия «писатель» и «россиянин» находятся в отношении пересечения, «писатель» и «человек» – подчинения, «Москва» и «столица России» – равнозначности, «Москва» и «Санкт-Петербург» – соподчинения, «мокрая дорога» и «сухая дорога» – противоположности, «Антарктида» и «материк» – подчинения, «Антарктида» и «Африка» – соподчинения и т. д. Надо обратить внимание на то, что если два понятия обозначают часть и целое, например «месяц» и «год», то они находятся в отношении соподчинения, хотя может показаться, что между ними отношение подчинения, ведь месяц входит в год.

Однако если бы понятия «месяц» и «год» были подчинёнными, то тогда надо было бы утверждать, что месяц – это обязательно год, а год – это не обязательно месяц (вспомним отношение подчинения на примере понятий «карась» и «рыба»: карась – это обязательно рыба, но рыба – это не обязательно карась). Месяц – это не год, а год – это не месяц, но и то, и другое – отрезок времени, следовательно, понятия «месяц» и «год», так же, как и понятия «книга» и «страница книги», «автомобиль» и «колесо автомобиля», «молекула» и «атом», находятся в отношении соподчинения, т. к. часть и целое – не то же самое, что вид и род.

Как нам уже известно, отношения между понятиями изображаются круговыми схемами Эйлера. Причём до сих пор мы изображали схематично отношения между двумя понятиями, но это можно сделать и с большим числом понятий.

Например, отношения между понятиями «боксёр» (Б), «негр» (Н) и «человек» (Ч) изображаются следующей схемой Эйлера (рис. 7).

Краткий курс логики: Искусство правильного мышления _07.png

Взаимное расположение кругов показывает, что понятия «боксёр» и «негр» находятся в отношении пересечения: боксёр может быть негром и может им не быть, а негр также может быть боксёром и может им не быть, а понятия «боксёр» и «человек», так же как понятия «негр» и «человек», находятся в отношении подчинения: любой боксёр и любой негр – это обязательно человек, но человек может не быть ни боксёром, ни негром.

Рассмотрим отношения между понятиями «дедушка» (Д), «отец» (О), «мужчина» (М), «человек» (Ч) с помощью схемы Эйлера (рис. 8).

Краткий курс логики: Искусство правильного мышления _08.png

Указанные четыре понятия находятся в отношении последовательного подчинения: дедушка – это обязательно отец, а отец – не обязательно дедушка; любой отец – это обязательно мужчина, однако не всякий мужчина является отцом; наконец, мужчина – это обязательно человек, но человеком может быть не только мужчина.

Отношения между понятиями «хищник» (Х), «рыба» (Р), «акула» (А), «пиранья» (П), «щука» (Щ), «живое существо» изображаются следующей схемой Эйлера (рис. 9).

Краткий курс логики: Искусство правильного мышления _09.png

Попробуйте самостоятельно прокомментировать эту схему, установив все имеющиеся на ней виды отношений между понятиями.

Подытоживая всё сказанное, отметим, что отношения между понятиями – это отношения между их объёмами. Значит, для того чтобы можно было установить отношения между понятиями, их объём должен быть резким, а содержание, соответственно, ясным, т. е. эти понятия должны быть определёнными.

Проверьте себя:

1. Какие понятия называются в логике совместимыми, а какие – несовместимыми? Приведите по пять примеров совместимых и несовместимых понятий.

2. В каких отношениях могут быть совместимые понятия? Что представляют собой отношения равнозначности, пересечения и подчинения между понятиями? Что такое видовые и родовые понятия?

3. В каких отношениях могут быть несовместимые понятия? Что представляют собой отношения соподчинения, противоположности и противоречия между понятиями? Чем отличается противоположность от соподчинения и противоречие от противоположности?

4. Каким образом изображаются отношения между понятиями?

5. В каком отношении находятся понятия, обозначающие часть и целое? Почему между этими понятиями не может быть отношения подчинения?

6. Определите, в каких отношениях находятся следующие понятия: двоечник и студент, композитор и человек, город и деревня, Антарктида и ледовый материк, небесное тело и звезда, треугольник и сторона треугольника, школа №5 и учебное заведение, майор и россиянин, знаменитый человек и немецкий писатель, дом и крыша дома, собака и кошка, умный человек и неумный человек, монарх и самодержец, физика и химия, геометрия и тригонометрия, столица и населённый пункт, книга и интересная книга, телевизор и планета солнечной системы, растение и крапива, окружность и круг, Николай II и последний русский царь, олимпийские игры и спортивные состязания.


Перейти на страницу:
Изменить размер шрифта: