Сюда же относятся понятия, которые вообще получены неотрицательным путём, например «бесконечный», «бесспорный» и т.п., если эти понятия могут быть символизированы только что указанным способом.

Следует заметить, что речь идёт об отсутствии ближайшего родового понятия. Если мы возьмём, например, два таких понятия, как «корабль» и «чернильница», то при всём различии их они имеют нечто общее (и то и другое есть вещь), но нет ближайшего родового понятия, в объём которого они входили бы.

Вопросы для повторения

Что такое категория? Какие категории признавал Аристотель? Какие следует признавать категории? Что такое вещь, свойство, отношение? Что такое подчинение понятий? Приведите примеры. Что такое соподчинение понятий? Приведите примеры. Какие понятия называются равнозначащими? Приведите примеры. Какие понятия называются противными или противоположными? Приведите примеры. Какие понятия называются противоречащими? Приведите примеры. Что такое скрещивающиеся понятия? Приведите примеры. Какие понятия несравнимые? Что необходимо для того, чтобы понятая можно было сравнивать?

Глава V

Об определении

Цель определения. Когда мы произносим какое-либо слово, соответствующее известному понятию, и хотим сделать его понятным для всех, то мы должны раскрыть содержание понятия, соответствующего указанному слову, а так как содержанием понятия называется совокупность его признаков, то раскрытие содержания понятия можно обозначить как перечисление признаков, присущих данному понятию. Какое-либо понятие A содержит признаки a, b, c, d; если мы перечислим эти признаки, то тем самым точно обозначим, раскроем содержание понятия A; это значит, другими словами, что мы определим его.

Следует заметить, что не все понятия могут быть определены. Понятия по своему содержанию бывают весьма различны: содержание одних понятий больше, других – меньше. Такие понятия, которые имеют сложное содержание, т.е. такие, которые имеют много признаков, могут быть определены. Но есть понятия, которые имеют настолько простое содержание, что не могут быть определены, потому что, как было сказано, для определения необходимо раскрытие содержания понятия; если же содержание понятия не может быть раскрыто, то оно не может быть и определено. Такие понятия называются простыми. Например, понятие «пунцовый цвет» не подлежит определению: цвет этот нужно видеть, чтобы знать, что он такое. Всё же определения, которые мы попытались бы дать в данном случае, были бы ложными в логическом отношении. Точно так же определять, что такое тон известной высоты, бесполезно; это усваивается, понимается непосредственным восприятием этого тона. Сюда же относятся такие понятия, как, например, понятия «равенство», «тождество», «тяжесть», «протяжение», «сознание» и т.п. Точно так же не могут быть определяемы индивидуальные понятия, потому что при определении их пришлось бы перечислить бесконечное множество признаков. Например: «этот бриллиант».

Итак, определить то или иное понятие значит перечислить его признаки. Но это представляется иногда задачей трудной, потому что количество признаков того или другого понятия может быть очень велико; поэтому перечислить даже большинство этих признаков не окажется возможным. Если бы, например, определяя понятие «прямоугольник», мы сказали, что прямоугольник есть геометрическая фигура, плоская, ограниченная прямыми линиями, четырёхугольная, с прямыми углами и т.д., то это определение было бы правильно, но практически оно неудобно, потому что перечисляется целый ряд признаков. Вследствие этого принят другой способ определения понятий, который имеет целью избежать полного перечисления признаков. Он заключается в следующем.

Дадим определение прямоугольника. Для этой цели мы воспользуемся понятием «параллелограмм». Когда мы употребляем термин «параллелограмм», то под ним мы понимаем или прямоугольник, или ромб, или квадрат. Зная это, мы не будем говорить «прямоугольник есть геометрическая фигура, плоская, ограниченная прямыми линиями, четырёхугольная» и т.д., а просто скажем, что это есть «параллелограмм, в котором все углы прямые», ибо всякий под словом «параллелограмм» разумеет геометрическую фигуру, ограниченную четырьмя прямыми, попарно параллельными линиями; прибавляя, что все углы фигуры прямые, мы окончательно завершаем определение её именно тем, что мы отличаем прямоугольник от ромба и от квадрата, которые тоже суть параллелограммы. Таким образом, определяя понятие «прямоугольник», мы указали род данного понятия (параллелограмм) и присоединили к нему видовое различие его (четыре прямых угла), отличающее его от других видов, входящих в тот же род, т.е. от ромба и квадрата. Руководствуясь тем же правилом, мы скажем, что «ромб есть параллелограмм, в котором все стороны равны», а «квадрат есть параллелограмм, в котором стороны и углы равны».

Итак, определение заключается в указании рода данного понятия с присоединением видового различия его. Это в логике принято обозначать при помощи формулы: «Definitio fit per genus et differentiam specificam», т.е. определение совершается при помощи рода и видового различия.

Если нам нужно определить какое-либо понятие, то мы выражаем наше определение при помощи суждения, содержащего подлежащее и сказуемое. Подлежащее этого суждения называется определяемым (definiendum), сказуемое называется определяющим (definiens). Эти термины важны потому, что благодаря им мы можем указать те правила, при соблюдении которых получается правильное определение. Таких правил четыре.

Другие в этой формуле прибавляют к genus термин proximum: «definitro fit per genus proximum et differentiam specificam» («определение совершается при помощи ближайшего рода и видового различия»), желая этим указать на то, что следует пользоваться ближайшим родовым понятием.

1. Определение должно быть соразмерным, т.е. таким, в котором объёмы определяемого и определяющего тождественны, т.е. одинаково велики. Если правило это нарушено, то определение неадекватно, или несоразмерно. В таком случае определение делается или слишком широким или слишком узким, именно, если объём определяющего становится слишком широким или слишком узким в сравнении с объёмом определяемого. Возьмём в пример определение лошади. Если сказать, что «лошадь есть домашнее животное», то это определение будет слишком широким; в нём объём определяющего будет более широким, чем объём определяемого понятия (в объём домашнего животного, кроме лошади, входят ещё коровы, собаки и т.п.). Относительно такого определения можно также сказать, что в него не входит указание существенного признака данного понятия. Если в определении опущены существенные признаки понятия, тогда оно окажется слишком широким, как в только что приведённом примере.

Возьмём определение, которое погрешает в противоположном направлении. Если бы мы сказали, что «треугольник есть плоская прямолинейная фигура, имеющая три равные стороны», то это определение было бы слишком узким. В нём объём определяющего понятия меньше объёма определяемого понятия. Именно: в объём определяющего понятия входят только равносторонние треугольники, а в объём определяемого понятия входят как равносторонние, так и неравносторонние треугольники.

2. Определение не должно делать круга. Это правило требует, чтобы определяемое понятие не определялось посредством понятия, которое само делается понятным только посредством определяемого. Возьмём, например, определение «вращение есть движение вокруг оси». Это определение понятия «вращение» посредством понятия «ось» делает круг, ибо само понятие «ось» определяется только через понятие «вращение» (как известно, ось – это прямая, вокруг которой происходит вращение). Таким образом, ясно, что в нашем определении получается круг: понятие «вращение» определяется посредством понятия «ось», а понятие «ось» – посредством понятия «вращение».


Перейти на страницу:
Изменить размер шрифта: