2. Высота звука

Итак, звук рождается колебательным движением тел. Однако далеко не всякое колебание сопровождается звуком. Тело издаёт звук, воспринимаемый ухом, только в том случае, если оно колеблется не меньше 16 и не больше 20 000 раз в одну секунду. Однако неверно было бы думать, что тело, колеблющееся с частотой, скажем, 10 или 30 000 раз в секунду, не звучит. Медленно колеблющийся маятник тоже звучит, как звучат тела и при ста тысячах колебаний в секунду. Только мы этих звуков не слышим. Звуки с частотой меньше 16 называют инфразвуками, а с частотой больше 20 000 — ультразвуками. В этой книге мы будем говорить главным образом о звуках слышимых.

Чем же отличаются друг от друга звуки, имеющие различные частоты? Сделайте такой простой опыт. Возьмите обыкновенную пилу и тонкую дощечку. Проведите медленно дощечкой по зубцам пилы (рис. 4); вы услышите отдельные удары — стуки доски о зубцы. Проведите несколько быстрее, и вы услышите низкий, густой звук. Чем быстрее водить дощечкой по зубцам, тем выше будут звуки. Вспомните, как пронзительно воет электрическая дисковая пила, когда она разрезает полено. Всё это убеждает нас в том, что чем больше частота, то есть чем больше колебаний в секунду совершает тело, тем выше издаваемый им звук.

Звук и слух i_006.png

Рис. 4. Опыт получения звука с пилой и дощечкой

Интересно отметить, что при возникновении звука определенной высоты совершенно безразлично, какое тело колеблется и что является причиной колебаний. Любые тела, колеблющиеся, например, 500 раз в секунду, всегда дадут звук одной и той же высоты, будет ли это струна гитары, колокольчик или свисток. И наоборот, если мы слышим звук данной высоты, то можем уверенно сказать: звучащее тело колеблется 500 раз в секунду. Так по высоте звука может определяться частота колебаний тела.

Эта закономерность часто помогает нам в жизни. Например, наливая в тёмную посуду жидкость, мы по изменению высоты звука определяем, когда она наполнится.

Когда автомобиль идёт по ровной дороге, гул работающего мотора имеет одну высоту; если же на пути встречается подъём, мотор снижает число оборотов, машина замедляет ход, и гул становится другим, более низким. Прислушиваясь к этим звукам, шофёр своевременно переводит регулятор скорости. Мотор снова увеличивает обороты, и высота гула приближается к прежней.

По высоте звука без труда можно определить, идёт ли тяжёлый танк с дизельным мотором или танк лёгкого типа, снабжённый бензиновым мотором. Звук последнего, как правило, более высокий.

Как же доходит до нашего уха возникший где-нибудь звук?

3. Звуковые волны

Бросьте в воду камень. По её поверхности тотчас же разойдутся круговые волны, уходящие всё дальше и дальше от места падения камня. На первый взгляд кажется, что вместе с волной уходят и отдельные частицы воды. Но если бросить на поверхность воды лёгкую щепку, то можно увидеть, что щепка только покачивается вверх и вниз; она в точности повторяет движение окружающих её частиц воды. Когда волна набегает, щепка поднимается вверх — на гребень; волна прошла — и щепка снова возвращается на прежнее место. Она не движется по направлению движения волны, не следует за волной. Значит, и частицы воды, образующие волну, не уходят с ней, а только колеблются вверх и вниз.

На рис. 5 показано, как частицы одна за другой приходят в колебательное движение, образуя волну.

Распространение звука можно сравнить с распространением волны по воде. Только вместо брошенного в воду камня имеется колеблющееся тело, а вместо поверхности воды — воздух.

Звук и слух i_007.png

Рис. 5. Схематическое изображение водяной волны. Стрелками показано направление движения отдельных частиц воды

Пусть источником звука будет камертон. Это — небольшой стальной изогнутый стержень с ножкой на изгибе (рис. 6). Камертоном часто пользуются при настройке музыкальных инструментов. Лёгким ударом по камертону можно заставить его звучать. В первое мгновение после удара ветвь камертона отклоняется, допустим, вправо; при этом она толкает вправо и прилегающие к ней частицы воздуха. Тогда в каком-то маленьком пространстве около камертона воздух окажется сгущённым. Но в таком состоянии частицы воздуха оставаться не могут. Стараясь разойтись, они потеснят своих соседей справа, и сгущение очень быстро передастся от одного слоя воздуха другому. Но и ветвь камертона не останется в покое. В следующий момент она уже отклонится влево и потеснит частицы воздуха с левой стороны. А справа воздух окажется теперь разрежённым. Это разрежение так же, как и сгущение, быстро сообщится всем слоям воздуха.

Звук и слух i_008.png

Рис. 6. Камертон

При следующем колебании повторится та же картина. Таким образом, каждое колебание ветви камертона создаст в воздухе одно сгущение и одно разрежение. Чередование таких сгущений и разрежений и есть звуковая волна. Сколько колебаний совершает камертон, столько отдельных сгущений — «гребней» и разрежений — «впадин» посылает он в воздух. Когда такая волна достигает уха, мы её и воспринимаем как звук.

Однако между водяными и звуковыми волнами есть существенная разница. Водяные волны распространяются кольцеобразно и только по поверхности. Звуковые же волны заполняют всё пространство около звучащего тела. Кроме того, в водяной волне колебания отдельных частиц совершаются вверх и вниз поперёк направления волны, а в звуковой волне частицы колеблются вперёд и назад вдоль волны. Поэтому волны на поверхности воды называются поперечными, а звуковые — продольными.

Но какая бы волна ни была, частицы вещества, участвующие в колебательном движении, никогда не перемещаются вместе с волной. И сама волна — это только передача движения от одной колеблющейся частицы другой.

Понять это ещё лучше помогут кости домино. Поставьте все их в ряд, недалеко друг от друга, и толкните первую кость (рис. 7). Падая, она увлечёт за собой вторую кость, вторая — третью и так далее. Через короткое время все кости будут лежать. Каждая из них осталась на своём месте, а передалось по всему ряду только движение.

Звук и слух i_009.png

Рис. 7. Падающие кости домино напоминают распространение звуковой волны

Точно так же из уст говорящего человека частицы колеблющегося воздуха не летят в уши слушающего, а передаётся лишь движение частиц, образующих отдельные сгущения и разрежения.

Артиллерийские выстрелы мы слышим на расстоянии многих километров также благодаря колебательным движениям отдельных частиц воздуха.

Передача звука на расстояние требует затраты определённой работы. Ведь для того, чтобы возникла звуковая волна, необходимо раскачать частицы воздуха. Однако размах колебаний частиц в звуковой волне ничтожно мал. Давление, которое образуется в местах сгущения волны, не превосходит даже в самом сильном звуке 0, 5 грамма на квадратный сантиметр, а в слабом звуке это давление много меньше давления, оказываемого комаром, севшим на голову человека! Отсюда понятно, что и работа, идущая на создание звуковой волны, очень невелика. Если бы миллион человек одновременно говорили в течение полутора часов, то вся энергия звуковых волн, создаваемых миллионом голосов, была бы достаточна только для того, чтобы вскипятить один стакан воды!

Читатель может спросить: почему же тогда для получения звука приходится тратить значительную работу? Попробуйте дуть некоторое время в свисток, — вы убедитесь, что занятие это не такое уж лёгкое. В сиренах и гудках часто применяется сжатый воздух или пар с давлением в несколько раз больше давления атмосферного воздуха. И, несмотря на такую большую затрату энергии, получаемый звук распространяется на сравнительно небольшое расстояние.


Перейти на страницу:
Изменить размер шрифта: