Лаплас i_005.jpg

Рис. 4.

Вместе с перемещением полюса мира перемещается перпендикулярная к ней плоскость небесного экватора и точка ее пересечения с небесной эклиптикой – линией кажущегося годичного перемещения Солнца среди созвездий. Эта точка, называемая точкой весеннего равноденствия, медленно и равномерно смещается по направлению к западу. Солнце, перемещаясь по эклиптике, попадает каждый год в эту точку раньше, и весна на Земле ежегодно наступает раньше, чем через один полный оборот Земли вокруг Солнца. Поэтому описанное явление назвали предварением равноденствий (21 марта день равен ночи на всей Земле) или прецессией.

Лаплас i_006.jpg

Рис. 5.

Коперник, создав свою систему мира, правильно об'яснил явление прецессии тем, что ось вращения Земли медленно поворачивается в пространстве. Она описывает при этом конус (рис. 5) с периодом в 26 тысяч лет. Каждые 26 тысяч лет весна начинается в тот момент, когда Земля находится в одной и той же точке пространства. Причина прецессии, т. е. движения земной оси по конусу, однако, оставалась загадочной. Ньютон, применив свои законы механики к вращающейся Земле, пришел к убеждению, что вследствие развивающейся при вращении центробежной силы Земля должна быть сплющена у полюсов, имея вдоль своего экватора как бы выступ.

Между прочим, это теоретическое заключение Ньютона горячо оспаривалось французскими учеными, определявшими в 1718 году размеры и форму Земли.

Впоследствии оказалось, что результат французских ученых был вызван неточностью их измерений. Новые измерения, произведенные в середине XVIII века, подтвердили правильность вывода Ньютона.

Ньютон, решившись раскрыть тайну прецессии, доказал, что прецессия вызвана этой сплюснутостью Земли. Луна и Солнце, находясь обычно не в плоскости земного экватора и действуя на избыток массы, расположенной вдоль него (благодаря упомянутому сжатию), стремятся повернуть ось Земли. Но Земля вращается вокруг своей оси, и, сопротивляясь этому насилию со стороны Луны и Солнца, земная ось, в согласии с законами механики, описывает при этом конус. Общеизвестно, что Землю можно сравнить с вращающимся волчком. Если надавить на ось волчка, она станет описывать в пространстве конус, подобный тому, какой описывает ось Земли.

Открыв закон тяготения и об'яснив им количественно почти все движения, известные астрономам, Ньютон не стремился выяснить природу этого тяготения и глубже проникнуть в его сущность. Вскоре стало принято считать, что тяготение может молниеносно передаваться через пустоту, действовать на огромных расстояниях без посредства какой-либо вещественной среды. Сам Ньютон сказал знаменитую фразу о природе тяготения: «Гипотез я не строю, ибо все то, что не может быть выведено из явлений, должно быть названо гипотезой».

Понять закон тяготения современникам Ньютона было не легко, особенно тем из них, которые находились под влиянием философии Декарта. Многие крупнейшие ученые, даже позднейшей эпохи, не могли понять тяготения и признать его существование. Например, Лейбниц, соперник Ньютона в области изобретения дифференциального и интегрального исчислений, писал Гюйгенсу: «Я не понимаю, как Ньютон представляет себе тяжесть или притяжение. По его мнению, повидимому, это не что иное, как некое необ'яснимое нематериальное качество». Гюйгенс, тогда уже широко известный своими работами по математике, физике и астрономии, отвечал Лейбницу: «Что касается причины приливов, которую дает Ньютон, то она меня не удовлетворяет нисколько, как и все другие его теории, которые он строит на своем принципе притяжения, который мне кажется нелепым».

Еще в 1730 году Иоганн Бернулли получил премию от парижской Академии наук за попытку выяснить причину эллиптичности орбит планет, совершенно игнорируя закон тяготения. Оппозиция, с которой теория Ньютона была принята на континенте, стала ослабевать, когда расширенная парижская Академия приняла в свой состав много молодежи, более восприимчивой к новым идеям.

В 1727 году молодой Вольтер, вернувшись из Англии на континент, со свойственным ему остроумным сарказмом так описал антагонизм научных взглядов, разделивших передовые страны его времени на два лагеря. «Если француз приедет в Лондон, он найдет здесь большое различие в философии, а также во многих других вопросах. В Париже он оставил мир, полным вещества, здесь он находит его пустым. В Париже вселенная наполнена эфирными вихрями, тогда как тут в том же пространстве действуют невидимые силы. В Париже давление Луны на море вызывает отлив и прилив, – в Англии же, наоборот, море тяготеет к Луне. У картезианцев все достигается давлением, что, по правде говоря, не вполне ясно, у ньютонианцев все об'ясняется притяжением, что, однако, немногим яснее. Наконец, в Париже Землю считают вытянутой у полюсов, как яйцо, а в Лондоне она сжата, как тыква…»

Успехи ньютонианства

Ньютон вполне строго разрешил проблему двух тел, т. е. вопрос о том, каково должно быть относительное движение двух тел под действием взаимного тяготения. Такой случай является идеализацией условий, имеющихся в солнечной системе. Какая-нибудь планета притягивается в действительности не только Солнцем, но и остальными планетами. В реальном мире мы имеем проблему не двух, а большего числа тел. Наиболее простым будет случай проблемы трех тел, но и эта проблема настолько сложна, что Ньютон не мог ее решить даже в самом общем виде. Однако все, сделанное им, было так грандиозно, потребовало такой затраты времени и сил, что ждать большего было невозможно. Вскоре выяснилось, что определение условия движения нескольких тел под действием взаимного тяготения требует несравненно более совершенного математического аппарата, чем тот, которым располагал Ньютон.

Основную задачу небесной механики – изучение движения нескольких тел – можно разделить на две: одну, имеющую самый общий характер, и другую – непосредственно относящуюся к частному случаю солнечной системы. Первая значительно труднее, чем вторая. В солнечной системе масса Солнца в 770 раз больше массы всех планет вместе взятых, и потому движение их происходит в первом приближении, как говорят, в соответствии с решением проблемы двух тел, т. е. по законам Кеплера. Притяжение данной планеты остальными лишь немного расстраивает это движение. Движение немного отклоняется от законов Кеплера; например, орбита оказывается не эллипсом, а более сложной кривой, притом не лежащей строго в одной плоскости. Точно также скорость движения планеты по своей орбите в сравнении с требованиями второго закона Кеплера бывает то больше, то меньше. Эти отклонения от кеплеровского движения называются возмущениями. Они невелики и потому не помешали Кеплеру и Ньютону открыть свои законы. Тем не менее, накапливаясь с течением времени, действие возмущений заметным образом меняет элементы орбиты планеты. Если возмущения не учитывать теоретически заранее, то вычисленные наперед положения светил на небе разойдутся с наблюдениями, и астрономическая теория не ответит тем требованиям, которые пред'являют к ней техника и астрономы-наблюдатели.

Было бы долго перечислять все области науки, техники и промышленности, которые так или иначе связаны с теорией движения небесных тел, т. е. с небесной механикой. Например, мореплавание, аэронавигация, картография и нахождение залежей подземных ископаемых нуждаются в точном теоретическом предвычислении положений небесных светил. Стоит вспомнить, например, как широко пользовались астрономическими методами ориентировки летчики Герои Советского Союза при организации плавучей полярной станции, при перелете через Северный полюс, при перелетах вдоль всего СССР и т. п. Кроме того, необходимо доказать, что если взаимное притяжение планет и расстраивает их движение по сравнению с элементарной теорией движения двух тел, то теория тяготения все же способна предусмотреть их количественно. При этом результат подсчета должен в точности совпадать с фактическими данными. Без подобного доказательства абсолютная истинность теории тяготения все же может быть подвергнута сомнению.


Перейти на страницу:
Изменить размер шрифта: