Природа почему-то скрывает часть красоты от самого пристального взгляда физиков и позволяет увидеть ее только с помощью сложнейших математических построений. Почему математика оказывается таким точным и незаменимым инструментом, вскрывающим красоту опытных наук? Не означает ли это, что она изучает не мир логических построений сам по себе, а через него все возможные реализации мира вещей; не нашу единственную Вселенную и не только те законы, которые ею управляют, а все возможные законы, которые могли бы реализоваться при других начальных условиях или в других вселенных?
Красота логических построений в науке - аналог одухотворенности в искусстве. Красота линий и красок в «Троице» Рублева - гениальная метафора субстанции «неделимой, неслиянной, единосущной»; у Достоевского напряженность и богатство духовных связей делают не-приглаженную прозу единственно возможной, а значит, красивой.
Не ошибаюсь ли я, так настойчиво сравнивая красоту в науке и в искусстве? Ведь в искусстве всякое творение индивидуально и неповторимо - образ Дон-Жуана создавали многие, и среди них Мольер, Байрон, Пушкин, каждый по-своему. А в науке задача состоит в том, чтобы найти закон природы, не зависящий от индивидуальности ученого…
И тем не менее рационализм ученого кончается на принципах познания. Конкретная реализация поисков всегда индивидуальна. Истину можно устанавливать разными способами. Форма осуществления идеи, как и в искусстве, отражает богатство духовного мира создателя. По способу подхода к задаче, по характеру используемых методов, по типу остроумия можно и в науке узнать автора работы. Когда крупный ученый решает пусть даже малую задачу, созданные им методы продолжают жить и развиваться в задачах более значительных.
Как проявляется красота в науке? Я буду говорить о своей науке - физике. Вся ее история - это поиски симметрии и единства мира, то есть поиски той внутренней красоты, о которой мы только что говорили.
Симметрия
Обычно мы под этим словом понимаем либо зеркальт ную симметрию, когда левая половина предмета зеркально симметрична правой, либо центральную, как у древнего восточного знака «инь и янь» или у пропеллера. В этом понимании симметрия означает неизменность предмета при отражении в зеркале или при повороте
вокруг центра. Но вернем слову его первоначальное значение - «соразмерность» - и будем понимать под ним неизменность не только предметов, но и физических явлений, и не только при отражении, но и вообще при какой-либо операции. Например, при переносе установки из одного места в другое или при изменении момента отсчета времени. Для проверки, скажем, зеркальной симметрии явления можно построить установку с деталями и расположением частей, зеркально симметричными относительно прежней. Явление зеркально симметрично, если обе установки дают одинаковые результаты.
Проследим сначала, как проявляется самая простая симметрия - однородность и изотропность (эквивалентность всех направлений) пространства. Она означает, что любой физический прибор - часы, телевизор, телефон - должен работать одинаково в разных точках пространства, если не изменяются окружающие физические условия. То же самое относится и к повороту прибора, если отвлечься от силы тяжести, которая выделяет на поверхности Земли вертикальное направление. Эти замечательные свойства пространства использовались в глубокой древности, когда геометрия Евклида применялась на практике. Ведь геометрия как практическая наука имеет смысл, только если свойства геометрических фигур не меняются при их повороте и одинаковы в Греции и в Египте.
Измерения показали, что геометрические теоремы, примененные к реальным физическим объектам, действительно выполняются с колоссальной точностью для тел любого размера, в каком бы месте мы их ни проверяли и как бы ни поворачивали тела. Одно из таких измерений было сделано «королем математиков» Карлом Фридрихом Гауссом, который проверял, не отклоняется ли геометрия нашего мира для больших размеров от евклидовой, определяя свойства треугольника, образованного вершинами трех гор. Сейчас мы знаем, что на масштабах Вселенной и вблизи тяжелых масс геометрия отличается от евклидовой. Однако поправки лежат далеко за пределами точности измерений Гаусса. Не только геометрические свойства, но и вообще все физические явления не зависят от перемещений или поворотов.
Итак, физические законы должны быть инвариантны относительно перемещений и поворотов. Это требование облегчает нахождение уравнений физики, придает им более красивый вид.
Еще одна важная симметрия - однородность времени. Все физические процессы протекают одинаково, когда бы они ни начались - вчера, сегодня, завтра…
Если какая-нибудь машина в этом году работает не так, как в прошлом, значит, у нее износились детали, или изменились климатические условия, или произошло еще что-нибудь, но это не связано с нарушением однородности хода времени.
Ход времени определяется относительной скоростью различных процессов в природе. Скорость космического корабля можно сравнить со скоростью света или звука в воздухе. Ход часов можно определить числом периодов колебания света, излучаемого атомом за время перемещения стрелки на одно деление. Любое измерение интервала времени означает сравнение скоростей разных процессов.
Равномерность хода времени означает, что во всякое время, и сегодня, и через год, относительная скорость всех процессов в природе одинакова.
Равномерность хода времени установлена с колоссальной точностью на примере излучения атомов. Атомы звезд излучают свет таких же длин волн, как и атомы земные, даже если этот свет был испущен миллиард лет тому назад.
Законы природы не изменяются и от замены времени на обратное. Это означает, что взгляд назад по времени являет такую же картину, что и взгляд вперед. Так ли это? Нам случается видеть, как яйцо, упавшее со стола, растекается, но никогда не доводилось наблюдать, как белок и желток собираются обратно в скорлупу и прыгают на стол. Старая английская песенка говорит, что если уж яйцо разбилось, тут не поможет и «вся королевская конница, вся королевская рать». И тем не менее молекулы могут случайно так согласовать свои движения, что невероятное свершится, хотя вероятность его осуществления неслыханно мала, и ждать чуда пришлось бы гораздо дольше, чем существует Вселенная. В простых системах явления такого рода происходят с большой вероятностью: молекулы в малом объеме газа под влиянием столкновений то стекаются вместе, то растекаются так, чтобы плотность в среднем была везде одинакова и равнялась плотности газа.
Глубокий анализ подобных событий привел физиков к заключению, что «обратимость» времени существует не только в механике и электродинамике, где она прямо видна из уравнений, но и во многих других явлениях природы. Расширение Вселенной хотя и означает необратимость на космологических интервалах времени (порядка миллиардов лет), но практически не влияет на обычные земные эксперименты.
Существует, кроме того, зеркальная симметрия - волчок, закрученный вправо, ведет себя так же, как закрученный влево, - единственная разница в том, что фигуры движения правого волчка будут зеркальным отражением фигур левого. Существуют зеркально асимметричные молекулы, как правая и левая руки, но если они образуются в одинаковых условиях, число левых молекул равно числу правых.
Зеркальная симметрия явлений природы - неточная, как и большинство других симметрии. В слабых взаимодействиях, ответственных за радиоактивный распад, зеркальная симметрия нарушается. Даже в явлениях, не связанных с радиоактивными превращениями, влияние слабых взаимодействий приводит к небольшому нарушению зеркальной симметрии. Так, в атомах относительная неточность зеркальной симметрии - порядка 10-15.
Однако влияние этого ничтожного нарушения на переходы между очень близкими уровнями не так мало (порядка 10-3-10-8). В 1964 году группа физиков Московского института теоретической и экспериментальной физики обнаружила небольшое нарушение четности ядерных сил, вызванное слабыми взаимодействиями (Ю. Абов, П. Крупчицкий, Ю. Оратовский). В 1966 году нарушение четности было обнаружено другим методом в Ленинградском институте ядерной физики имени Б. П. Константинова (В. Лобашов, В. Назаренко, Л. Саенко, Л. Смотрицкий, Г. Харкевич). В 1978 году Л. Баркову и М. Золотареву из Института ядерной физики новосибирского академгородка удалось обнаружить это явление в атоме. Кроме того, слабые взаимодействия приводят также к небольшому нарушению временной обратимости.