Все сильновзаимодействующие частицы (адроны) обладают еще одним свойством: число барионов не изменяется при их (адронных) столкновениях, барионы могут только переходить друг в друга: точнее, не изменяется разность барионов и антибарионов. Это свойство можно сформулировать как закон сохранения барионного заряда, достаточно лишь приписать каждому бариону барионный заряд 1, а антибариону -1. Барионный заряд пи-мезонов, которые могут рождаться в любом количестве, следует считать равным нулю.
Вскоре обнаружились и другие странные частицы. Для включения их в одно семейство с нуклоном или с пионом (в случае барионного заряда, равного нулю) понадобилось усложнение изотопической симметрии. Нужно было предположить более широкую симметрию, включающую странные частицы. Обнаружились два больших семейства сильновзаимодействующих частиц: барионы и мезоны. Барионы имеют полуцелый спин (1/2,3/2…) и барионный заряд 1, мезоны - целый спин (0, 1, 2…) и не имеют барионного заряда. Семейство барионов разбилось на две группы с близкими свойствами. Барионы одной из них (их восемь) имеют спин 1/2; в другой группе десять частиц, и спин их 3/2. Аналогично мезоны с нулевым спином образуют восьмерку схожих часгиц.
Изобилие частиц, обнаруженных в результате успехов теоретической и экспериментальной физики, не радовало, а только озадачивало теоретиков. Начались попытки найти праматерию или прачастицы, с тем чтобы все обилие наблюдаемых частиц получалось бы из комбинаций нескольких элементарных, или, говоря осторожнее, более элементарных частиц.
ИСТОРИЯ ОДНОЙ СИММЕТРИИ
Три кварка для мастера Марка!..
Д. Джойс
Необыкновенно поучительна и драматична история работ по нахождению субчастиц, из которых состоят адроны. Из разрозненных фактов постепенно возникала все более отчетливая картина устройства адронов. Мы перечислим главные события этой драмы, за которыми стоят огромные усилия физиков всех стран, временные удачи и провалы, судьбы людей, потерявших годы в попытках найти истину на неправильном пути. И вместе с тем мы увидим, что неудавшиеся попытки каждый раз приближали к цели и подготовили правильное решение.
Пока были известны только два адрона - нуклон и пи-мезок, была надежда, что элементарными частицами являются нейтрон и протон, а пи-мезон есть связанное состояние нуклона и антинуклона. Так, отрицательный пи-мезон строился из антипротона и нейтрона с противоположными спинами. Эту идею не удалось превратить в убедительную количественную теорию, и к лучшему, так как сразу после открытия лямбда-частицы стало ясно, что первичные частицы следует снабдить странностью. Тогда возникла идея, что есть не два, а три строительных элемента, которые обозначались аналогично нейтрону, протону и лямбде: n, р, \lambda. Развитие этой идеи привело к созданию модели Окуня - Сакаты, по именам советского теоретика Льва Окуня и японского - Сёити Сакаты. Субчастицы имели те же свойства, что и их тезки - нейтрон, протон, лямбда.
Мезоны составлялись из субчастицы и ее античастицы, а барионы - из двух частиц и античастицы. Таким образом, из субчастиц n, р, К и их античастиц были составлены все известные тогда адроны и предсказано су
Начало истории
шествование некоторых новых адронов, которые были открыты позднее.
Так, из трех частиц, n, р, \lambda и трех античастиц можно составить девять мезонов со спином ноль, а известны были лишь семь: три пи-мезона и четыре К-мезона. Два недостающих электрически нейтральных мезона \eta и \eta' были открыты через несколько лет.
Составная модель естественным образом объяснила разбиение девяти мезонов на семейство из восьми (октет) и одиночного мезона (синглет), но объяснить наблюдавшиеся семейства барионов, в частности семейство восьми барионов со спином 1/2, на основе этой модели не удавалось.
Кварки
Все многочисленные попытки получить наблюдаемые семейства барионов и мезонов из частиц с целым электрическим и барионным зарядом потерпели неудачу. Неожиданный выход из тупика был найден американскими теоретиками Марри Гелл-Маном и независимо Джорджем Цвейгом.
Они предположили, что все адроны составлены из частиц с барионным зарядом, равным 1/3 нуклонного, и с электрическим зарядом, равным 2/3 или -1/3 заряда протона. Спин у этих частиц такой же, как у нуклона, равный 1/2. Частицы с дробным электрическим зарядом никогда не появлялись на опыте, и физики были так прочно убеждены в том, что все заряды кратны электронному или протонному, что идея частиц с дробным зарядом казалась дикой. Американский журнал «Physical Rewiew Letters» отказался печатать статью Гелл-Мана, и ему пришлось отправить ее в Европу в «Physics Letters». Гелл-Ман назвал эти дикие частицы «кварками» - так в романе Д. Джойса «Поминки по Финнега-ну» кричат чайки.
Все адроны, как по мановению волшебной палочки, улеглись в те группы с одинаковыми свойствами, которые были ранее установлены экспериментально.
Барионы состоят из троек кварков, чтобы барионный заряд был равен единице. Из трех кварков можно составить две комбинации со спином 1/2 и 3/2, поэтому и возникают два семейства барионов. Пришлось ввести три типа кварков: верхний, нижний и странный. Они обозначаются начальными буквами английских слов up, down, strange. Кварк u имеет электрический заряд 2/3; d- и s-кварки - 1/3; странный кварк имеет странность 1 (он входит только в странные адроны), а и- и d-кварки имеют странность 0. Кварки u, d есть две изоспино-вые проекции одной частицы с изоспином 1/2 (верхняя и нижняя проекции - отсюда и название этих кварков). Нейтрон и протон устроены так: n = (udd); р = (duu). Или, иначе, нейтрон состоит из двух d-кварков и одного u-кварка, а протон получается заменой u +1 d. Легко увидеть, что при этом заряд нейтрона равен нулю, а протона 1, как и полагается. Почти так же легко составить все возможные комбинации троек из трех кварков с суммарным спином 1/2 и 3/2. Получаются все барионы, входящие в два семейства - восьмерку и десятку. Мезоны состоят из кварка и антикварка. Так, заряженные пи-мезоны изображаются как л+ = (ud); \pi^- = (du); а нейтральные как комбинация (uu) (dd). Чертой обозначаются антикварки; их электрический заряд отличается знаком от заряда соответствующего кварка. В пи-мезон странный кварк не входит, пи-мезоны, как мы уже говорили, - частицы со странностью и спином, равными нулю. У К°-мезона странность - 1 . К°= (ds). Это нейтральный мезон. Аналогично составляются и заряженные: К+ =(us); К-= (us).
Поиграйте в эту игру, постройте и другие адроны. Это напоминает складывание кубиков.
Однако, как мы сейчас увидим, нашего набора кубиков все еще недостаточно для полной картины.
Кварки нужно раскрасить!
Среди барионов, составляющих десятку со спином 3/2, есть дельта-резонанс (или дельта-барион). Он обозначается знаком Л (греческая заглавная буква «дельта»). Эта частица живет недолго, ее трудно увидеть в свободном состоянии. Однако она проявляется в рассеянии пи-мезонов на нуклонах. Дельта-барион представляет собой связанное состояние нуклона и пи-мезона. В процессе рассеяния пи-мезон и нуклон на время объединяются в дельта-барион. Поэтому сечение рассеяния пи-мезона на покоящемся нуклоне имеет максимум (резонанс) при энергии пи-мезона, соответствующей этому связанному состоянию.
Воспользуемся известной везде, где есть телевизор или радио, формулой Е=mс2, энергия равна массе, помноженной на квадрат скорости света. Разделив энергию пи-мезона в максимуме сечения на с2 и прибавив к массе нуклона, получим массу дельта-резонанса. Поскольку нуклон и пи-мезон не странные частицы, странность дельты равна нулю. А это означает, что она состоит из и- и d-кварков.
По зависимости сечения от угла отклонения рассеянных частиц было установлено, что спин дельты равен 3/2. Были обнаружены четыре изотопические разновидности дельта-бариона, отличающиеся только электрическим зарядом.