"Открытие" не названо, но по крайней мере теперь мы знаем, что оно заключено в механизме, который мы бы назвали лебедкой, содержащей барабан для наматывания каната, несколько зубчатых передач и червячную пару. Кроме червячной передачи, которая входит в состав лебедки, остальные механизмы ворот и зубчатые колеса - упоминаются в "Механических проблемах" и, значит, были известны до Архимеда.

Новым здесь был сам принцип построения многоступенчатой передачи. Открытие Архимеда должно было состоять в нахождении закона определения общего "выигрыша в силе", достигаемого с помощью механизма, состоящего из последовательно соединенных передач. Этот закон можно сформулировать так: общее передаточное отношение многозвенного механизма равно произведению передаточных отношений его звеньев.

Но это простое правило приводит к ошеломляющим результатам. Если взять пару зубчатых колес с отношениями радиусов 1:5 (как у Герона), то получим на большом колесе "выигрыш в силе" в 5 раз. Если же мы на вал с малым колесом насадим еще одно такое же большое и сцепим его с еще одним таким же маленьким, то получится уже "выигрыш" в 25 раз. Для редуктора с тремя такими передачами он будет равен 125, с пятью - 3125, а с семью передачами составит 390 625; наконец, взяв всего 12 передач, получим астрономическое число 1 220 703 125!

Найдя этот закон, Архимед открыл, на что способна механика, и счел не лишним продемонстрировать ее могущество окружающим.

Гидростатика

Хотя, как мы видим, Архимед ввел понятие центра тяжести и нашел закон рычага, в физику под именем закона Архимеда и архимедовой силы вошли понятия из его замечательного сочинения "О плавающих телах". Как и сочинение "О равновесии плоских фигур", это сочинение состоит из двух частей: вступительной, в которой даются основные положения, и основной, посвященной рассмотрению равновесия плавающего в жидкости параболоида вращения.

Замечательно, что роль аксиомы здесь берет на себя физическая модель "идеальной жидкости". "Предположим, - пишет Архимед, - что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из частиц сдавливается жидкостью, находящейся над ней по отвесу, если только жидкость не заключена в каком-нибудь сосуде и не сдавливается чем-нибудь другим". Это единственное предположение, исходя из которого Архимед выводит все остальное.

Первым выводом является доказательство того, что "поверхность всякой жидкости, установившейся неподвижно, будет иметь форму шара, центр которого совпадает с центром Земли". Далее следуют теоремы: "Тела, равнотяжелые с жидкостью, будучи опущены в эту жидкость, погружаются так, что никакая их часть не выступает над поверхностью жидкости и не будут двигаться вниз", "Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, погружается настолько, чтобы объем жидкости, соответствующий погружений части тела, имел вес, равный весу всего тела", Тела, более легкие, чем жидкость, опущенные в эту жидкость насильственно, будут выталкиваться вверх силой, равной тому весу, на который жидкость, имеющая равный объем с телом, будет тяжелее этого тела", "Тела, более тяжелые, чем жидкость, опущенные в жидкость, будут погружаться, пока не дойдут до самого низа, и в жидкости станут легче на величину а жидкости в объеме, равном объему погруженного тела".

Трудно представить себе более ясные и четкие формулировки поведения в воде плавающих тел. Но возникает вопрос: правомочно ли было выводить их из принятого вначале положения о свойствах жидкости. Как можно доказать его правильность?

И тут мы впервые в истории физики встречаемся со своеобразием ее аксиом.

Архимед предлагает нам мысленно представить себе вещество, состоящее из абсолютно скользких атомов, способных передавать давление во все стороны и подвергающихся давлению со стороны таких же атомов, находящихся сверху. Потом он математически исследует это вещество. Оказывается, что поверхность такого вещества в свободном состоянии есть сфера с центром в центре земного шара. Но так как это общеизвестный факт (форма поверхности Мирового океана), то отсюда можно сделать обратный вывод: поскольку поверхность океана - сфера, то жидкость имеет именно такое строение, какое постулировано Архимедом. Можно также не сомневаться в том, что выведенные математические законы гидростатики Архимед проверял на опыте.

Таким образом, сочинение "О плавающих телах" - первая попытка экспериментально проверить фундаментальное предположение о строении вещества путем создания его модели. В этом сочинении Архимед не только подтвердил атомистические идеи Демокрита, но и доказал ряд важных положений о физических свойствах атомов жидкости.

Архимед вывел законы гидростатики для идеальной жидкости, описав ее свойства. Свойства реальной жидкости немного отличаются от свойств архимедовой идеальной жидкости. Эти отличия в некоторых случаях играют заметную роль. Так, вопреки законам Архимеда смазанная жиром иголка может держаться на поверхности налитой в сосуд воды. Но нельзя упрекнуть ученого в неверности его законов. Эти законы справедливы постольку, поскольку жидкость приближается к идеальной модели. Для описания свойств реальной жидкости надо внести соответствующие поправки в модель. Но это не опровергает справедливость выкладок Архимеда.

Определение удельного веса

Римский архитектор Витрувий, сообщая о поразивших его открытиях разных ученых, приводит следующую историю: "Что касается Архимеда, то изо всех его многочисленных и разнообразных открытий то открытие, о котором я расскажу, представляется мне сделанным с безграничным остроумием.

Во время своего царствования в Сиракузах Гиерон после благополучного окончания всех своих мероприятий дал обет пожертвовать в какой-то храм золотую корону бессмертным богам. Он условился с мастером о большой цене за работу и дал ему нужное по весу количество золота. В назначенный день мастер принес свою работу царю, который нашел ее отлично исполненной; после взвешивания корона оказалась соответствующей выданному весу золота.

После этого был сделан донос, что из короны была взята часть золота и вместо него примешано такое же количество серебра. Гиерон разгневался на то, что его провели, и, не находя способа уличить это воровство, попросил Архимеда хорошенько подумать об этом. Тот, погруженный в думы по этому вопросу, как-то случайно пришел в баню и там, опустившись в ванну, заметил, что из нее вытекает такое количество воды, каков объем его тела, погруженного в ванну. Выяснив себе ценность этого факта, он, не долго думая, выскочил с радостью из ванны, пошел домой голым и громким голосом сообщал всем, что он нашел то, что искал. Он бежал и кричал одно и то же по-гречески: "Эврика, эврика! (Нашел, нашел!)".

Затем, исходя из своего открытия, он, говорят, сделал два слитка, каждый такого же веса, какого была корона, один из золота, другой из серебра. Сделав это, он наполнил сосуд до самых краев и опустил в него серебряный слиток, и... соответственное ему количество воды вытекло. Вынув слиток, он долил в сосуд такое же количество воды.., отмеряя вливаемую воду секстарием (0,547л), чтобы, как прежде, сосуд был наполнен водой до самых краев. Так он нашел, какой вес серебра соответствует какому определенному объему воды.

Произведя такое исследование, он таким же образом опустил золотой слиток... и, добавив той же меркой вылившееся количество воды, нашел на основании меньшего количества секстантов воды (секстант - римская мера веса, равная 0,534 Н), насколько меньший объем занимает слиток".

Потом тем же методом был определен объем короны. Она вытеснила воды больше, чем золотой слиток, и кража была доказана.

Часто этот, рассказ связывают с открытием закона Архимеда, хотя он касается способа определения объема тел неправильной формы.

Возможно, что в этом рассказе Витрувия ванна, забытая одежда и возглас "Эврика!" являются вымыслом, но нас интересуют научные факты. Во-первых, бросается в глаза, что согласно описанию Витрувия Архимед сделал больше того, что требовалось. Чтобы обнаружить примесь, достаточно было сравнить объем короны с объемом равного ей веса золота. По-видимому, Витрувий не вполне разобрался в какой-то другой принадлежавшей Архимеду задаче об определении удельного веса тел. Об этом свидетельствует и фраза: "Отсюда он нашел, какой вес серебра соответствует какому объему воды". В ней, собственно, и содержится определение удельного веса - отношение веса к объему или к весу вытесненной воды (при измерении объема золотого слитка говорится о весе воды).


Перейти на страницу:
Изменить размер шрифта: