На этот раз я бил без промаха. Теперь уже все дети без исключения занялись самостоятельными исследованиями — что-то дома перекладывали, рисовали, и в итоге — кто раньше, кто позже и частично с моей помощью — разобрались все же, почему для получения правильного ответа число 20 еще следует разделить пополам.

Детский вопрос: можно ли других людей в чем-то убедить?

Пятилетний экспериментатор?

Как-то уже не на кружке, но явно под его влиянием, у меня произошла такая беседа с сыном. Дима спросил меня, как вообще можно других людей в чем-то убедить. «Есть разные способы, — ответил я, — В физике, например, делают опыты». — «А-а, понятно». (Что такое физический опыт, Дима знает по книге Л. Л. Сикорука «Физика для малышей» — одному из наиболее блистательных шедевров научно-популярной литературы для маленьких.) «Вот, например, такой вопрос: какие предметы падают быстрее — легкие или тяжелые?» — «Конечно, тяжелые падают быстрее». — «Ты так думаешь. А другой человек может сказать, что предметы падают одинаково быстро». — «Ну-у нет!» — «А почему нет?» «Ну, ведь если мы возьмем камень и лист бумаги, то камень упадет быстрее!» — «Да. Значит, чтобы убедить этого другого человека, что он не прав, ты сделаешь опыт, верно? Возьмешь камень и лист бумаги и посмотришь, что упадет быстрее». — «Да». — «А теперь давай сделаем другой опыт».

Как невидимые круги сделать видимыми?

Идею этого опыта мне рассказали друзья. Сначала мы берем два одинаковых листа бумаги, и они, разумеется, падают одинаково медленно. После этого я комкаю один из листов и скатываю его в комок. Я хочу спросить, какой из листов теперь упадет быстрее, но Дима меня опережает. «А теперь вот этот (он показывает на комок) стал тяжелее». — «Почему!?!» — «Потому что он упадет быстрее». Вот, оказывается, как обстоит дело. Для того чтобы физический опыт мог вас в чем-то убедить, нужно сначала, чтобы ваша логика развилась до такого уровня, когда вы осознаете недопустимость логических кругов.

Бросаем в паре все, что попадается под руку

Я, однако, не унимаюсь. Мы продолжаем бросать в паре все, что попадается под руку: пуговицу и большой тяжелый лист ватмана, пуговицу и гирю, пластмассовый пустотелый кубик и деревянный кубик того же размера и т. п. Дима обескуражен результатами; попытался было предположить, что пуговица тяжелее листа ватмана, но быстро отказался от этой мысли. «Значит, бывает по-разному. Иногда легкие вещи падают быстрее, а иногда тяжелые». Он уже почти готов удовлетвориться таким объяснением. И вдруг догадывается: «А-а, понимаю, папа! Это ему воздух мешает падать». — «Кому?» — «Лист большой, и ему воздух мешает падать, не пускает его. А пуговица маленькая, ей воздух меньше мешает». — «Правильно! А если бы воздуха не было, что бы тогда было?» — «Тогда бы все падали одинаково». — «Молодец. А когда я лист бумаги скомкал в комочек, что произошло?» Дима подбирает слова, чтобы сформулировать ответ. Меня подводит нетерпение — я отвечаю за него: «Воздух ему перестает мешать». Но Дима меня поправляет: «Нет, не перестает, а начинает меньше мешать».

Принципиальное отступление от принципа

Я уже писал о своем принципе: никогда не пытаться «внедрить» в ребенка свою точку зрения, даже намеком. Но в иерархии принципов есть еще один, более важный: ни одному принципу не должно следовать с железной непреклонностью.

У каждого из нас есть «внутренний редактор». Он следит за тем, чтобы мы рассуждали, писали, говорили, поступали в соответствии с общественными нормами. Этот «редактор», по-видимому, нам необходим. Без него мы стали бы непонятными для других. Но он же сковывает творчество. Внутренне свободен и открыт для творчества тот, кто чтит принцип: ни одному принципу не должно следовать с железной непреклонностью! Кстати, дети нередко поступают так, будто следуют этому принципу. Это «творческая смелость» по неведению

И вот сейчас, мне кажется, удобный повод отступить от первого принципа. С явным намеком в голосе я задаю еще один вопрос о скомканном листе бумаги: «И что, разве он действительно становится при этом тяжелее?» Дима смеется таким тоном, будто хочет сказать, что только по недомыслию можно было ляпнуть такую глупость, и отвечает: «Ну конечно же, нет! Может быть, только совсем немножечко тяжелее».

Мысленный эксперимент, или Почему вопросы важнее ответов

Вечером, записывая нашу беседу в дневник, я обдумываю ее более внимательно. Я вдруг начинаю понимать: то, что мы произвели, не является в точном смысле слова физическим экспериментом. Эксперимент — это вопрос, заданный природе, с заранее неизвестным ответом. А в нашем случае Дима знал все ответы заранее. Не обязательно было реально бросать гирю с пуговицей — собственный опыт жизни ребенка в реальном физическом мире оказывался вполне достаточным, чтобы правильно предсказать результат этого опыта. Можно сказать, что ни один из опытов не сообщил ему ничего нового — если говорить только о фактах. Новым было лишь упорядочение известных фактов. По существу, мы произвели то же самое доказательство путем перебора логических возможностей, которое раньше проделали с шариками в коробочках.

Данная ситуация проливает некоторый дополнительный свет на то, почему так полезны в обучении вопросы. С помощью вопросов мы помогаем ребенку сопоставить те элементы его жизненного опыта, которые до этого существовали как бы отдельно, не связываясь друг с другом.

Мы, обезьяны и математика

Как-то на даче мальчики вспоминали о своем недавнем походе в зоопарк, где им показывали обезьян. Я вдруг вмешался в их разговор и заявил, что это не им показывали обезьян, а их водили показывать обезьянам. «А ну-ка, докажите мне, что я не прав». Завязался отчаянный спор. Первый аргумент — «Ведь мы же на них смотрели» — я разбил легко: «Они на вас тоже смотрели». Второй аргумент был серьезнее: «Мы где хотим можем ходить, а обезьяны в клетке сидят». На это я возразил так: «Нет, не где хотите. Обезьянам нельзя выходить из клетки, а нам нельзя входить в эту клетку. Просто есть решетка — и обезьяны ходят где хотят с одной стороны решетки, а мы — с другой». Так мы еще спорили некоторое время, и вдруг Дима воскликнул радостно, как бы поймав меня на подвохе: «Ой, папка! Ведь это же мы опять математикой занимаемся!»

…На самом первом занятии кружка дети бросились наперегонки считать разложенные на столе пуговицы. Тогда они именно так представляли себе математику — это когда считают. С тех пор их представление разительно изменилось. Теперь математика для них — что-то вроде логической игры в стиле Льюиса Кэрролла. Я верю, что именно такая математика и нужна детям.

Мне думается, что гость Первого сентября математик и ответственный папа Александр Звонкин убедительно показал: не пропедевтика (опережающее изучение) школьного материала нужна дошкольнику. Пожалуй, более всего малышу подходит увлекательная игра с ровесниками и со взрослым. Такая игра, если взрослый сумеет ее организовать, опираясь, например, на советы А. Звонкина, доставит ребенку радость содержательного общения и эстетическое удовольствие, разовьет интуицию и интеллектуальные способности. И при этом пробудит желание исследовать наш мир, экспериментировать, учиться.

И еще? обогатит жизнь взрослого.


Перейти на страницу:
Изменить размер шрифта: