Таким образом, нейтрино, возникшие в центре Солнца, улетают по прямолинейным траекториям в пространство и некоторые из них могут достичь поверхности Земли. Для этих частиц не имеет значения, ночь или день стоит в это время на Земле. Днем они прилетают сверху, а ночью — снизу, свободно пронзая земной шар. Если бы у нас был нейтринный телескоп, то с его помощью мы могли бы увидеть в центре Солнца маленькое яркое пятно. Это — область, в которой происходят ядерные реакции водородного цикла и где возникают нейтрино. С помощью такого телескопа мы могли бы увидеть это яркое пятно и ночью, после захода Солнца. Нужно было бы только направить наш телескоп не на небо, а вниз, к Земле, вслед за суточным движением Солнца, так как Земля прозрачна для нейтринного излучения.

Но, к сожалению, нейтринного телескопа не существует, поскольку, чтобы его построить, нужно уметь отклонять нейтрино от прямолинейного пути с помощью линз или зеркал, как отклоняют свет в фотоаппарате или электроны в электронном микроскопе. Но нейтрино всегда летят прямолинейно.

К счастью, существуют изотопы, с помощью которых можно устроить хотя и очень небольшое, но заметное препятствие для нейтрино. Наиболее известным из них является изотоп элемента хлора Сl37. Если атомы вообще могут останавливать нейтрино, то легче всего это сделать с помощью изотопа Сl37. В тех редких случаях, когда нейтрино сталкивается с ядром атома хлора, это ядро испускает электрон и возникает атомное ядро элемента аргона (рис. 5.5). В результате реакции возникает не обычный атом этого благородного газа, а изотоп, который распадается приблизительно через 35 дней. На этой реакции основана идея известного эксперимента Раймонда Девиса по изучению солнечных нейтрино.[13] Этот эксперимент известен главным образом тем, что он поставил перед астрофизиками чрезвычайно затруднительные вопросы. Но прежде чем рассказать о нем, мы обсудим еще некоторые трудности.

100 миллиардов солнц: Рождение, жизнь и смерть звезд img_29.jpeg

Рис. 5.5. Нейтрино может привести к превращению атома хлора в атом аргона. При этом освобождается электрон.

С атомами хлора могут взаимодействовать только нейтрино высоких энергий. Нейтрино, которые возникают в реакциях протон-протонной цепочки, обладают слишком низкой энергией. Они не могут взаимодействовать с атомами хлора. Позволяют ли нам наши представления о строении звезд найти на Солнце источник нейтрино с высокими энергиями? Оказывается, что наряду с протон-протонной цепочкой происходят другие, сопутствующие ядерные реакции. Эти реакции не вносят практически никакого вклада в выделение энергии на Солнце, и поэтому мы их пока не рассматривали. Среди этих реакций есть одна, которая происходит тем чаще, чем больше гелия образовалось в недрах звезды. Она схематически показана на рис. 5.6. Нормальный атом гелия с массовым числом 4 сталкивается с ядром изотопа гелия с массовым числом 3. При этом возникает бериллий с массовым числом 7. Если с этим атомом до того, как он самопроизвольно распадется, столкнется протон, то возникнет изотоп бора с массовым числом 8. Такие атомы бора тоже радиоактивны, и они через некоторое время снова превращаются в атомы бериллия. Но в результате такого превращения образуются позитрон и нейтрино с высокой энергией.

100 миллиардов солнц: Рождение, жизнь и смерть звезд img_30.jpeg

Рис. 5.6. В побочной цепи реакций, протекающих наряду с реакциями водородного цикла (см. рис. 3.3), возникает радиоактивный изотоп бериллия Be8, который испускает позитрон и нейтрино высокой энергии. Красными волнистыми стрелками обозначено испускание квантов света.

Нейтрино, возникающие при такой реакции, как раз подходят для взаимодействия с ядрами хлора! Эти нейтрино также проникают через вещество, практически не взаимодействуя с ним, даже если речь идет о большом количестве хлора. Однако атомы хлора все же взаимодействуют, хотя и очень редко, с пролетающими нейтрино. На этом основан уже упомянутый эксперимент Девиса.

Нейтринный эксперимент Раймонда Девиса

Оказалось, что можно построить детектор для солнечных нейтрино. К сожалению, этот детектор позволяет фиксировать только те нейтрино, которые возникают в результате побочной реакции превращения бериллия в бор. Эта реакция несущественна для астрофизических процессов в недрах звезд. Такой детектор не позволяет увидеть нейтрино, возникающие в результате чрезвычайно важных для Солнца (а значит, и для нас) реакций водородного цикла. Но если наша модель Солнца правильна, то она будет предсказывать и количество высокоэнергетических нейтрино.

Девис задумал такой эксперимент. В большой контейнер помещается 390000 литров перхлорэтилена. Этот контейнер помещен на глубине 1500 метров под землей и дополнительно защищен толстым слоем воды. Такая защита позволяет исключить нежелательные побочные ядерные реакции. Перхлорэтилен представляет собой жидкость, которая применяется главным образом при химической чистке одежды и близка по свойствам к хорошо известному нам четырех-хлористому углероду. Каждая молекула этого вещества содержит четыре атома хлора, среди которых иногда встречается и чувствительный к нейтрино изотоп Сl37. Использование перхлорэтилена является наиболее дешевой и удобной возможностью сконцентрировать в небольшом объеме много атомов хлора. Эти атомы облучаются в каждый момент времени нейтрино, прилетающими к нам с Солнца. При этом почти ничего не происходит. Многочисленные нейтрино с низкой энергией, которые возникают в результате реакций водородного цикла, проходят через контейнер с перхлорэтиленом, не взаимодействуя с хлором. Однако можно обнаружить нейтрино с высокими энергиями, которые образуются при радиоактивном распаде изотопа бора. Если количество нейтрино высоких энергий правильно оценивается астрофизической моделью Солнца, то в контейнере каждый день в среднем один атом хлора под воздействием солнечного нейтрино будет превращаться в атом аргона.

Чем дольше мы будем ждать, тем больше образуется атомов аргона. Но через 35 дней аргон вновь распадается с образованием хлора. Если перхлорэтилен долго подвергается воздействию потока солнечных нейтрино, то через некоторое время устанавливается своеобразное равновесие: за определенный промежуток времени возникает и распадается в среднем одно и то же количество атомов аргона. К сожалению, концентрация атомов аргона, возникающих в таком контейнере, очень мала. Если наша модель процессов на Солнце правильна, то во всем контейнере будет находиться всего около 35 атомов аргона. Эти атомы нужно отыскать и подсчитать.

Задача о поиске 35 атомов аргона в 610 тоннах жидкости оставляет далеко позади задачу о поиске иголки в стоге сена. Количество атомов хлора только в одном кубическом сантиметре жидкости выражается 22-значным числом, а в контейнере Девиса содержится 390000 литров, т. е. 390 миллионов таких кубических сантиметров! И в этом огромном объеме нужно найти всего-навсего 35 атомов аргона! Но, к счастью, эту задачу можно решить. Атомы аргона можно «отмыть» из перхлорэтилена с помощью гелия, который продувается через объем жидкости. Предварительные опыты показали, что этот способ позволяет выделить из перхлорэтилена примерно 95 % всех атомов аргона. Изотоп аргона, который образуется при взаимодействии хлора с солнечными нейтрино, радиоактивен. Поэтому после выделения этих атомов из контейнера их можно легко подсчитать, фиксируя акты радиоактивного распада.

В жидком перхлорэтилене, который «отмыт» от атомов аргона, образуются новые ядра аргона. Спустя некоторое время они вновь «отмываются» гелием и опять подсчитываются. Таким образом, контейнер с перхлорэтиленом представляет собой неисчерпаемый детектор, в котором постоянно образуются радиоактивные атомы аргона.

вернуться

13

Метод регистрации солнечных нейтрино был предложен в 1946 г. академиком Б. М. Понтекорво. — Прим, перев.


Перейти на страницу:
Изменить размер шрифта: