49. ПРОЛЕТНЫЙ КЛИСТРОН

Для сантиметровых волн успешно применяются клистроны, работа которых основана на изменении скорости электронного потока.

В этих приборах значительное время полета электронов не вредно, а необходимо для нормальной работы прибора. Клистроны бывают пролетные (двух-резонаторные и многорезонаторные), пригодные для генерации и усиления колебаний, и отражательные (однорезонаторные), работающие только в качестве генераторов.

Электронный поток от катода к аноду проходит через две пары сеток, представляющих собой части стенок двух объемных резонаторов. Первый резонатор служит входным контуром. К нему с помощью коаксиальной линии и витка связи подводятся усиливаемые колебания с частотой. Его сетки образуют модулятор, в котором происходит модуляция скорости электронов.

Второй резонатор служит выходным контуром для усиления колебаний. Их энергия отбирается с помощью витка связи и коаксиальной линии. На оба резонатора и на анод подано положительное напряжение, создающее между сеткой и катодом ускоряющее поле, под влиянием которого электроны влетают в модулятор со значительной начальной скоростью.

Если в первый резонатор вводятся колебания, то между сетками существует переменное электрическое поле, которое действует на электронный поток и изменяет (модулирует) его скорость. В тот полупериод, когда на второй сетке имеется положительный, а на первой сетке отрицательный потенциалы, поле между сетками будет ускоряющим и электроны, проходящие модулятор, получают добавочную скорость.

Электроны, имеющие большие скорости, догоняют электроны, движущиеся с меньшими скоростями, в результате чего электронный поток разбивается на отдельные более плотные группы электронов – электронные сгустки. То есть благодаря модуляции электронного потока по скорости в пространстве группирования получается модуляция этого потока по плотности.

Группируются лишь электроны, пролетающие через модулятор во время одной половины периода. Хорошее группирование возможно только в случае, если изменение скорости электронов под влиянием модулирующего переменного поля незначительно по сравнению со скоростью, которую они получили от постоянного ускоряющего напряжения. Поэтому переменное напряжение между сетками резонатора должно быть значительно меньше, чем постоянное напряжение. Группирование электронов в сгусток повторяется в течение одной половины периода.

После точки наибольшего сгущения электронного потока электроны снова расходятся.

Электронные сгустки пролетают через второй резонатор тогда, когда электрическое поле в нем тормозящее. Пролетевшие второй резонатор электроны попадают на анод и нагревают его. Часть электронов попадает и на сетки резонаторов.

Если бы электронный поток не был модулированным, то он не мог бы поддерживать колебания во втором резонаторе.

Двухрезонаторные клистроны применяют в качестве усилителей в передатчиках СВЧ, причем их полезная мощность в режиме непрерывной работы может быть до десятков киловатт, а импульсный режим – до десятков мегаватт. При укорочении длины волны мощность передатчиков уменьшается.

Для усиления слабых сигналов в приемниках клистроны малопригодны, так как они создают большие собственные шумы.

50. ЛАМПЫ БЕГУЩЕЙ И ОБРАТНОЙ ВОЛНЫ

Недостатки, свойственные клистрону, устраняются в лампе бегущей волны (ЛБВ). Усиление и КПД в ЛБВ могут быть значительно выше, чем в клистроне. Это объясняется тем, что электронный поток в ЛБВ взаимодействует с переменным электрическим полем на большом участке своего пути и отдает значительную часть своей энергии на создание усиленных колебаний. Электронный поток в ЛБВ гораздо слабее, чем в клистроне, и поэтому уровень шумов сравнительно невелик. Полоса частот может быть очень большой, так как в ЛБВ нет никаких колебательных систем. Ширина полосы частот ограничивается не самой лампой, а различными дополнительными устройствами, служащими для связи лампы с внешними цепями и для согласования отдельных элементов этих дополнительных устройств между собой. Лампы бегущей волны для частот порядка тысяч мегагерц имеют полосу частот пропускаемых колебаний порядка сотен мегагерц, что вполне достаточно для радиолокации и всех видов современной радиосвязи. ЛБВ устроены так. В левой части удлиненного баллона помещен электронный прожектор, имеющий подогревный катод, фокусирующий электрод и анод. Электронный луч, созданный электронным прожектором, проходит далее внутри проволочной спирали, играющей роль внутреннего провода коаксиальной линии. Наружным проводом этой линии служит металлическая трубка. Спираль укреплена на специальных изоляторах. Фокусирующая катушка, питаемая постоянным током, служит для сжатия электронного луча по всей его длине. Вместо катушки для фокусировки могут быть применены также постоянные магниты. Так как магнитные фокусирующие системы очень громоздки, то разработаны электростатические способы фокусировки электронного луча в ЛБВ, т. е. фокусировка с помощью электрического поля.

В ЛБВ для более коротких сантиметровых волн спираль заменяют замедляющими системами других типов, так как трудно изготовить спираль очень малых размеров. Эти замедляющие системы представляют собой волноводы сложной зигзагообразной конструкции или имеющие стенки в виде гребенок. Вдоль таких волноводов электронный луч пропускается по прямой линии, а электромагнитная волна распространяется с пониженной скоростью. Подобные замедляющие системы применяют также в мощных ЛБВ, так как спираль не может выдержать рассеяния в ней большой мощности.

Принципы работы ЛБВ послужили основой для создания лампы обратной волны (ЛОВ), которую иногда также называют карцинотроном. Эта лампа в отличие от ЛБВ предназначена только для генерирования сантиметровых и более коротких волн. В ЛОВ применяют также волноводные замедляющие системы, как и в ЛБВ, но волна и электронный луч движутся навстречу друг другу. Первоначальные слабые колебания в ЛОВ получаются от флуктуаций электронного потока, затем они усиливаются и возникает генерация. Путем изменения постоянного напряжения, создающего электронный луч, можно в очень широком диапазоне частот осуществлять электронную настройку ЛОВ. Созданы маломощные ЛОВ на частоты в десятки тысяч мегагерц, имеющие полезную мощность генерируемых колебаний до десятков долей ватта при КПД порядка единиц процентов. Для частот до 10 000 МГц разработаны ЛОВ с полезной мощностью в десятки киловатт при непрерывном режиме работы и в сотни киловатт при импульсном режиме.

Генераторные ЛОВ малой и средней мощности с прямолинейным электронным лучом называют кар-цинотронами типа 0. Для больших мощностей применяют ЛОВ, называемые карцинотронами типа М, в которых электронный луч под действием магнитного поля движется по окружности. Замедляющая система в этих лампах располагается по окружности, а поперечное магнитное поле создается постоянным магнитом так же, как и в магнетроне.


Перейти на страницу:
Изменить размер шрифта: